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 Outline 
 
 •  Need of indirect techniques in Nuclear Astrophysics 
 
 • Trojan Horse Method (THM) 
 
 •  Physics case: carbon burning in massive stars 



Astrophysical 
energies 

σ  ∼ picobarn due to the Coulomb barrier between the interacting nuclei 
   ⇒  Low signal-to-noise ratio  
    ⇒ no access to the low energy region 

Extrapolation from the higher energies using the 
 

ASTROPHYSICAL FACTOR 
  

S(E) = σ(E) E exp(2πη) 
 
S(E) is a smoothly varying function of the energy 
than the cross section σ(E)  

…but large uncertainties in the extrapolation 

à experimental improvements/solutions to measure at low energies  

 



S(E) enhancement experimentally found due to the  Electron Screening  

… from measurements at astrophysical energies we 
discover the importance of              à à à à  

S(E)s= S(E)b exp(πηUe/E)  

3He + 2H à p + 4He 

S(E)b needed to assess the reaction rate, BUT no way to measure S(E)b directly 	



Entrance	channel	

A+a	

Several 
reaction 

mechanisms 
link the two 

channels 

Reaction	products	

C+c+…	

The reaction theory is needed to select only one reaction mechanism. However, nowadays  
powerful techniques and observables for careful data analysis and theoretical investigation. 
 

For review see: 
R. Tribble et al., Rep. Prog. Phys. 77 (2014) 106901 

Quite straightforward experiment, no Coulomb suppression, no electron screening but … 



  

v  Coulomb dissociation 

v Asymptotic Normalization Coefficients (ANC)  

 

 

v  Trojan Horse Method (THM)  …to determine the S(E) factor of a charged 
particle reaction A+xàc+C selecting the 
Quasi Free contribution of an appropriate  
A+a(x+s)à c+C+s transfer reaction. 

…to determine the absolute S(E) factor of a 
radiative capture reaction  A+x à B+γ  studying the 
reversing photodisintegration process B+γ → A+x  

… to determine the S(0) factor of 
the radiative capture reaction, 
A+x à B+γ studying a peripheral 
transfer reaction into a bound 
state of the B nucleus  



 

ü  only x - A interaction 

ü  s = spectator (ps~0)  

EA > ECoul ⇒  

Basic principle: astrophysically relevant two-body σ from quasi- free 
contribution of an appropriate three-body reaction 

A + a → c + C + s      à à à      A + x → c + C 

a: x ⊕ s clusters 

S 

c 
A 

a 

C 

Direct break-up 

x 

2-body reaction 

Eq.f. ≈ 0   !!! plays a key role in compensating  for 
the beam energy 

Eq.f. = EAx– Bx-s  ±  intercluster motion 

NO Coulomb suppression 

NO electron screening 



PWIA hypotheses: 
●  beam energy  >  a = x ⊕ s breakup Q-value 
●  projectile wavelength k-1 << x – s intercluster distance 

d3σ
dΩcdΩCdEc

∝  KF ⋅ Φ(ps )
2 dσ off

dΩ

KF  kinematical factors  
 
⏐φ⏐2 momentum distribution of 
s inside a 
 
dσN/dΩ Nuclear cross section 
for the A+x→C+c reaction 
 

MPWBA formalism  
(S. Typel and H. Wolter, Few-Body Syst. 29 (2000) 75) 
 
-  distortions introduced in the c+C channel, but 
plane  waves for the three-body entrance/exit 
channel 
 
-  off-energy-shell effects corresponding to 
the suppression of the Coulomb barrier are 
included 
  

A + a → c + C + s  à à à      A + x → c + C 

but  No absolute value of the cross section 

A.	Tumino	et	al.,	PRL	98,	252502	(2007)	



 
This accounts for: 
 
-  HOES effects 
-  Normalization (very 

useful for RIBS) 
 
Moreover: 
Possible generalization 
to CDCC & DWBA 
 
However à More 
complicated! 

R. Tribble et al., Rep. Prog. Phys. 77 (2014) 106901 

Amplitude of 
the TH reaction  

The THM simple factorization can be deduced from the 
general formula in the case of resonant reactions 



Standard R-Matrix approach cannot be applied to extract the resonance parameters à 
Modified R-Matrix is introduced instead 

In the case of a resonant 
THM reaction the cross 
section takes the form 

Mi(E) is the amplitude of the transfer reaction (upper vertex) that can be easily calculated 
à The resonance parameters can be extracted 

The A + a(x+s) → F*(c + C) + s process is a transfer to 
the continuum where particle x is the transferred 
particle 

Advantages: 
§  possibility to measure down to zero energy 
§  No electron screening 
§  HOES reduced widths are the same entering the OES S(E) factor  (New!) 

a 

A 

x 
s 

F* 
C 

c 

When transfer to a bound F state, M2 is proportional to the ANC of the populated F state  



From recent update of the theory within the formalism of the three-body Coulomb  
asymptotic states (CAS)  (A.M. Mukhamedzhanov and A.S. Kadyrov FBS 2019) 
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4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ
1/2

bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.

The conclusions are: 
 
The simultaneous inclusion of the Coulomb effects in the intermediate and final state 
decreases the effect of the final-state Coulomb interactions on the triple differential 
cross section. 
 

In particular if one of the Coulomb parameters in the final state, for example ηbs, is 
zero or very small then the cumulative effect of the Coulomb interactions in the 
intermediate and final state is negligible. 

Coulomb renormalization 
factor: 
Coulomb effects on the 
resonance line shape plus 
energy dependence of 
the cross section. 	

			=E0(bB)	– EbB(f)	
	
Crucial	role	of		ζ=ηcs	+ηCs	-	ηR(F*s)		

a 

A 

x 
s 

F* 
C 

c 

Theory of surrogate nuclear and atomic reactions 17

4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ 1/2
bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.

Theory of surrogate nuclear and atomic reactions 17

4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ 1/2
bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.

Theory of surrogate nuclear and atomic reactions 17

4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ 1/2
bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.

Theory of surrogate nuclear and atomic reactions 17

4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ 1/2
bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.



Binary	
reaction	

Indirect	
reaction	

Elab	 Q	 Accelerator	

1 7Li(p, α)4He 2H(7Li, α α)n 19-22	 15.122	 TANDEM 13 MV 
LNS-INFN, Catania 

Spitaleri et al. PRC,1999, 
Lattuada et al. ApJ, 2001 

2 7Li(p, α)4He 7Li(3He, α α)d 33	 11.853	 CYCLOTRON, 
Rez, Praha 

Tumino et al. EPJ, 2006 

3 6Li(p, α)3He 2H(6Li, α 3He)n 14,25	 1.795	 TANDEM 13 MV 
LNS-INFN, Catania 

 Tumino et al. PRC, 2003 

4 9Be(p, α)6Li 2H(9Be, α 6Li)n 22	 -0.099	 TANDEM  
CIAE, Beijing 
TANDEM 13 MV 
LNS-INFN, Catania 

Wen  et al. PRC, 2008, Wen et 
al. JPG 2011 

5 11B(p, α)8Be 2H(11B, α 8Be)n 27	 6.36	 TANDEM 13 MV 
LNS-INFN, Catania 

Spitaleri et al. PRC, 2004, 
Lamia et al. JPG, 2011 

6 15N(p, α)12C 2H(15N, α 12C)n 60	 2.74	 CYCLOTRON, 
 TAMU, College Station 
TANDEM 13 MV 
LNS-INFN, Catania 

La Cognata et al. PRC, 2008 

7 18O(p, α)15N 2H(18O, α 15N)n 54	 1.76	 (CYCLOTRON, 
 TAMU, College Station 
TANDEM 13 MV 
LNS-INFN, Catania 

La Cognata et al. PRL 2008, 

8 19F(p, α)16O 2H(19F, α 16O)n 50,55	 8.11	 TANDEM 13 MV 
LNS-INFN, Catania 

La Cognata et al. ApJ Lett., 
2011 
Indelicato et al. ApJ 2017 

       
9 

17O(p, α)14N 2H(17O, α14N)n 45	 -1.032	 TANDEM 13 MV 
LNS-INFN, Catania 
TANDEM 11 MV 
Notre Dame 

Sergi et al. PRC  (R), 2010 
Sergi et al PRC 2016 



Binary	
reaction	

Indirect	
reaction	

Elab	 Q3	 Accelerator	 Ref.	

10 18F(p ,α)15O 2H(18F, α15O)n 48	 0.65	 CYCLOTRON 
CNS-RIKEN, Tokyo 

11 10B(p, α)7Be 2H(10B, α7Be)n 27	 -1.078	 TANDEM 13 MV 
LNS-INFN, Catania 

12 6Li(d,α)4He 6Li(6Li,αα)4He 5

4.8	

20.9	 TANDEM  
Demoscritos,Atene 
TANDEM, 
IRB, Zagreb 

Cherubini et al. ApJ, 1996 
 
Spitaleri et al .PRC, 2001 

13 6Li(d,α)4He 6Li(6Li,αα)4He 6	 20.9	 CYCLOTRON 
Rez, Praha 

Pizzone et al. PRC,  2011  

14 3He(d,α)1H 6Li(3He,p4He)4He 5,6	 16.878	 DINAMITRON, 
Bochum 

La Cognata et al. 2005 

15 2H(d,p)3H 2H(6Li,p3He)4He 14	 2.59	 DINAMITRON, 
Bochum 

Rinollo et al. EPJ 2005 

16 2H(d,p)3H 2H(3He,p3H)1H 18	 -1.46	 CYCLOTRON, 
Rez, Praha 

Tumino et al. PLB 2011 
Tumino et al. APJ 2014 

17 2H(d,n)3He 2H(3He,n3He)1H 18	 -2.224	 CYCLOTRON 
Rez, Praha 

Tumino et al. PLB 2011 
Tumino et al. APJ 2014 

18 9Be(p,d)8Be 9Be(d,d8Be)n 18	 -1.66	 TANDEM 13 MV 
CIAE, Beijing Qungang Wen et al.2016  

19 6Li(n,a)3H 2H(6Li, t α)1H 14 2.224 TANDEM 13 MV 
LNS-INFN, Catania 

Tumino et al.,EPJ A 2005 
Gulino et al., JPG 2010  

Cherubini et al. PRC 2015 
Pizzone et al. EPJ 2016 
Spitaleri et al. PRC 2014 
Spitaleri et al. PRC 2017 



Binary	
reaction	

Indirect	
reaction	

Elab	 Q	 Accelerator	 Ref.	

20 17O(n,a)14C 17O(n, a14C)1H 43.5 -0.40
7 

TANDEM 11 MV 
Notre Dame 
TANDEM 13 MV 
LNS-INFN, Catania 

Gulino et al. PRC(R) 2013 

21 13C(a,n)16O 13C(6Li, a n)16O 7.82 3.85 TANDEM  
FSU, Tallaassee, 
Florida, USA 

La Cognata et al. PRL 2013 
La Cognata et al ApJ 2013 

22 12C(12C,a)20Ne 
12C(12C,p)23Na 
 

12C(14N,a20Ne)2H 
12C(14N,p23Na)2H 
 

30 -5.65 
-8.03 

TANDEM  13 MV 
LNS-INFN, Catania 

 23   12C(a,a)12C 
 

13C(6Li, a n)16O 20 0 TANDEM 13 MV 
LNS-INFN, Catania 

Spitaleri et al. EPJ 2000 

 
24 

1H(p,p)1H 2H(p,pp)n 5,6 2,224 CYCLOTRON 
ATOMKI,Debrecen 
 TANDEM  
IRB, Zagreb 
TANDEM 13 MV 
LNS-INFN, Catania 
TANDEM 5 MV 
Napoli University 

Tumino et al. PRL 2007 
Tumino et al. PRC 2008 

Tumino et al. Nature 2018  

25
0 

7Be(n,a)4He 
 

2H(7Be,aa)1H 43.5 16.7 TANDEM  LNL-
INFN, Catania 

L. Lamia et al., to be 
submitted 

25
0 

19F(a,p)22Ne 
 

6Li(19F,p22Ne)2H 6 1.2 IRB, Zagreb, 
TANDEM 

Pizzone et al. ApJ 2017 
D’Agata et al ApJ 2018 



•  Crucial phase in the nucleosynthesis of massive 
stars (> 8 Mʘ)  at T ~ 0.6-1.2 GK 

•  It influences Mup 
•  Engine for superbursts from accreting neutron 

stars 
•  ignition conditions of Type Ia supernovae  

 
 
Main issues: 
 
-  Cross section drops by many orders of 

magnitude with decreasing energy àLack of 
data at the relevant low energies  

 
-  Inconsistencies among different theoretical 

extrapolations 
 
 
1 to 3 orders of magnitude uncertainty at low 
energies 

J. ZICKEFOOSE et al. PHYSICAL REVIEW C 97, 065806 (2018)

TABLE I. List of possible transitions in 12C(12C,p)23Na. The
energy Ep of the emitted proton is calculated for E = 2.6 MeV at
θlab = 130◦ and given in the laboratory system.

Transition J π Ex (MeV) Qx (MeV) Ep (MeV)

p0 3/2+ 0 2.240 3.71
p1 5/2+ 0.440 1.801 3.33
p2 7/2+ 2.076 0.165 1.95
p3 1/2+ 2.391 − 0.150 1.69
p4 1/2− 2.640 − 0.399 1.48
p5 9/2+ 2.704 − 0.463 1.43
p6 3/2+ 2.982 − 0.741 1.20
p7 3/2− 3.678 − 1.437 0.67
p8 5/2− 3.848 − 1.607 0.53
p9 5/2+ 3.914 − 1.673 0.48
p10 1/2+ 4.430 − 2.189 0.13

hindrance model [18] predicts a steeper drop of the 12C + 12C
cross section compared to other low-energy extrapolations,
e.g., Ref. [13]. A 12C + 12C cross section governed by the
hinderance model would require an increased temperature
to ignite C burning. Carbon burning nucleosynthesis and all
subsequent evolutionary phases would be strongly affected by
such variations of temperature and stellar mass, respectively.
For instance, all the elements produced in the C-burning
shell of massive stars, among which are the intermediate-light
elements Ne, Na, Mg, and Al, are affected by a change of the
temperature. In addition, the C-burning shell is a promising
site for the synthesis of the s-process weak component. In this
context, temperature plays a fundamental role, because of the
sensitivity of the available 13C, the fuel of the 13C(α,n)16O
neutron source, on the photodisintegration rate of 13N [19].

Current estimates of carbon fusion reaction rates at astro-
physically relevant energies rely on cross-sectional extrapola-
tions from higher energies. Low-energy studies of 12C + 12C
reactions have focused either on charged particle or γ -ray
spectroscopy. Charged particle spectroscopy has the advantage
that the total fusion cross section can in principle be measured,
while γ -ray spectroscopy cannot account for direct transitions
to the ground state of the residual nucleus. Furthermore,
γ -ray spectroscopy has been limited at low energies due to
background arising from hydrogen contamination, both 1H
and 2H, within the target. Therefore, particle spectroscopy
measurements historically reached a lower energy limit than
γ -ray spectroscopy experiments. However, the condition of
being a total cross-sectional measurement is not fulfilled in
practice in the case of particle spectroscopy due to finite
energy resolution and a low-energy detection limit. This point
is supported by the data in Table I where p0 and p1 are left
with significantly more energy after the transition than any
other proton groups. The low residual energy of p7 through p10
leave them either below the typical noise threshold or buried in
low-energy beam-induced background. Furthermore, with the
narrow separation in emitted proton energy between p0 and p1,
the two groups may not be resolved, particularly when thick
targets are used.

A number of 12C + 12C experiments [20– 28] obtained
useful data below the Coulomb barrier and all have observed
pronounced structures in the excitation function. Recently, the
hydrogen contamination problem was significantly reduced
[28] to levels sufficient to reach 2.1 MeV in the center-of-mass
system (all energies from this point on will be expressed in the
center-of-mass energy). A particularly strong resonance was
found at 2.14 MeV, enhancing the reaction rates in the stellar
temperature range [28]. The collection of data required active
and passive shielding but remained limited at the low-energy
limit mainly by natural background. In a different approach,
γ -particle coincidences have been utilized in a measurement
at Argonne National Laboratory, USA [29]. The total S factor
of this work is in good agreement with that of Ref. [28], but the
data set consists of only a few data points and therefore does not
provide any information about possible resonance structures
in the energy region covered by the experiment. Furthermore,
no information is provided on the calculation of the total S
factor from the experimental data. Another approach using
a solenoid spectrometer is also under study, and promising
results at energies above 4 MeV have been published [30].

The 12C + 12C cross section σ (E) at low energies is typi-
cally expressed in terms of the modified astrophysical S factor
[20]:

S∗ = Eσ (E) exp(2πη + gE) (1)

with η = 13.88E− 1/2 and g = 0.46 MeV− 1, where the energy
E is given in MeV.

Much of the data collected to date for the 12C + 12C reaction
are shown in Fig. 1, where the low-energy limit reached by
each respective experiment can be seen. Clearly there are
large discrepancies between a number of the data sets, which
may depend on the detection method as well as the particular
strength of contamination within the target.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
1015

1016

1017

1018

1019

Jiang et al., 2018 Diaz-Torres
Spillane et al., 2007 Hindrance model
Aguilera et al., 2006 Potential model
Becker et al., 1981 Fowler
High & Cujec, 1977
Patterson et al., 1969

S*
to
t
(M
eV
b)

Ec.m. (MeV)

FIG. 1. The total S∗ factor of the 12C + 12C reactions compared
to some theoretical models, i.e., the hindrance model [18], a potential
model calculation based on Ref. [31], and the recent model of Diaz-
Torres [32], as well as the parametrization of Caughlan and Fowler
[13].
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 12C(12C,α)20Ne and 12C(12C,p)23Na reactions via the Trojan Horse Method applied to the 
12C(14N,α20Ne)2H and 12C(14N,p23Na)2H three-body processes 
                                                                                                                   
  2H from the 14N  as  spectator s 
 
Observation of 12C cluster transfer in the 12C(14N,d)24Mg* reaction         (R.H. Zurmȗhle et al. PRC 49 (1994) 5)  

QUASI-FREE MECHANISM 

ü  only 12C - 12C interaction 

ü d = spectator   

E14N =30 MeV> ECoul 

NO Coulomb barrier in the entrance channel 

NO electron screening 

C. Spitaleri et al., Phys. Rev. C 63, 005801 (2001) 
R. Tribble et al. Rep. Prog. Phys. 77 106901 (2014) 

CC

C

N

C

mm
m

m
m

1212

12

14

12

+
⋅ EQF = E14N                                                  -10.27 MeV 	

⇒	

14N 

12C 

12C 

d 

24Mg* 
20Ne,23Na 

a,p 

Direct breakup 



Red lines and bands: 
modified R-matrix fits 
for all channels at the 
same time  
	

Reduced widths for 
known levels are used 
as free parameters 
to reproduce their 
total and part ia l 
widths as in Abegg & 
Davis, PRC 1991  

Measured 12C(12C,α0,1)20Ne and 12C(12C,p0,1)23Na HOES cross-sections   
 

    obtained after Q-value selection plus PWIA tests
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Fig. 1 | Excitation functions from THM experimental yields. The 
quasi-free cross-section for the four channels 20Ne + α0 (a), 20Ne + α1 (b), 
23Na + p0 (c) and 23Na + p1 (d) is projected onto the Ecm variable (black 
dots). Error bars denote ±1σ uncertainties and account for background 

subtraction (combined in quadrature). Red lines and light-red shading 
represent the results of the modified R-matrix fits and the related 
uncertainties, respectively.
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Fig. 2 | 12C + 12C astrophysical S(E)* factors. The THM S(E)* factors for 
the four channels 20Ne + α0 (a), 20Ne + α1 (b), 23Na + p0 (c) and 23Na + p1 (d)  
are shown as black lines. The available direct data in the Ecm range 
investigated are reported as red filled circles15, purple filled squares18, 

blue filled diamonds19, blue filled stars20 and green filled triangles21. The 
upper and lower grey lines mark the range arising from ±1σ uncertainties 
on resonance parameters plus the normalization to direct data in the 
20Ne + α1 channel at Ecm = 2.50–2.63 MeV.
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Normalization to direct data done in the Ecm window 2.50–2.63 MeV of the 20Ne + α1: all 
data sets available included, less sensitivity to flawed ones 

Agreement between THM and direct data within the experimental errors except around 2.14 
MeV, where THM data do not confirm the claim of a strong resonance;  
nearby one at 2.095 MeV about one order of magnitude less intense in the 20Ne + α1 channel and 
with similar intensity in the 23Na + p1 one 
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Kettner (1980)	

14

Methods

Gamow peak: It defines the energy window corresponding to the maximum of the reaction

rate. It is achieved with the convolution of the Maxwell velocity distribution and the tunneling

probability. Its central energy E0 and its width � depend on temperature as:

E0 = 0.1220(Z2
1Z

2
2

M1M2

M1 +M2
T 2)1/3 (MeV ) (2)

� = 0.2368(Z2
1Z

2
2

M1M2

M1 +M2
T 5)1/6 (MeV ) (3)

where Zi and Mi are the charges and masses of interacting ions and T the temperature in GK

of the astrophysical scenario of interest. More details can be found in [24].

S(E) astrophysical factor: it is introduced to remove the dominant energy depen-

dence of the cross section between charged particles at astrophysical energies due to the

Coulomb barrier penetration. The S(E) factor is defined through the relationship:

S(E) = E�(E) exp(2⇡⌘) (4)

where �(E) is the energy dependent cross section and exp(2⇡⌘) is the inverse of the Gamow

factor, with ⌘ the Sommerfeld parameter depending on the charges Z1, Z2 of the colliding

nuclei and on their relative velocity v in the entrance channel, ⌘ = Z1Z2e2/(~v). For s-wave

non resonant reactions, the S(E) factor is nearly independent of energy and is the conventional

quantity that is used to extrapolate to low energies. For the 12C+12C reaction, it is customary

to use the so called modified S(E) factor, S(E)⇤, which displays resonances more clearly. It is

defined as

S(E)⇤ = E�(E) exp(87.21E�1/2 + 0.46E) (MeV b) (5)

where the exponential term is the inverse of the Gamow factor with a correction arising from

the second term in the Coulomb barrier approximation [30]. In particular, the numerical factor
A.  Tumino et al., Nature 557, 687 (2018) 	
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Fig. 1 | Excitation functions from THM experimental yields. The 
quasi-free cross-section for the four channels 20Ne + α0 (a), 20Ne + α1 (b), 
23Na + p0 (c) and 23Na + p1 (d) is projected onto the Ecm variable (black 
dots). Error bars denote ±1σ uncertainties and account for background 

subtraction (combined in quadrature). Red lines and light-red shading 
represent the results of the modified R-matrix fits and the related 
uncertainties, respectively.

1.0 1.5 2.0 2.5 3.0

1015

1016

1017

1018

1019

1020

Ecm (MeV)

Ecm (MeV)

S
(E

)* 
(M

eV
 b

)
S

(E
)* 

(M
eV

 b
)

S
(E

)* 
(M

eV
 b

)
S

(E
)* 

(M
eV

 b
)

20Ne + α0

1.0 1.5 2.0 2.5 3.0

1015

1016

1017

1018

1019

1020
20Ne + α1

1.0 1.5 2.0 2.5 3.0

1015

1016

1017

1018

1019

1020

Ecm (MeV)

23Na + p0

1.0 1.5 2.0 2.5 3.0

10 15

10 16

10 17

10 18

10 19

10 20

Ecm (MeV)

23Na + p1

a

b

c

d

Fig. 2 | 12C + 12C astrophysical S(E)* factors. The THM S(E)* factors for 
the four channels 20Ne + α0 (a), 20Ne + α1 (b), 23Na + p0 (c) and 23Na + p1 (d)  
are shown as black lines. The available direct data in the Ecm range 
investigated are reported as red filled circles15, purple filled squares18, 

blue filled diamonds19, blue filled stars20 and green filled triangles21. The 
upper and lower grey lines mark the range arising from ±1σ uncertainties 
on resonance parameters plus the normalization to direct data in the 
20Ne + α1 channel at Ecm = 2.50–2.63 MeV.
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result is in agreement with spectroscopy studies9,22 that report a dip 
at 2.14 MeV and no particularly strong α state at around 2.1 MeV. 
Further agreement is found with unpublished experimental data down 
to Ecm = 2.15 MeV for the 12C(12C, p0,1)23N reactions23. Our result is 
also consistent within experimental errors with the total S(E)* from 
a recent experiment at higher energies24, which was calculated at the 
overlapping Ecm = 2.68 ± 0.08 MeV.

The reaction rates for the four processes were calculated from the 
THM S(E)* factors using the standard formula4 and summed to obtain 
the total 12C + 12C reaction rate. Its numerical values are given in 
Extended Data Table 2 (see Methods section ‘Numerical values of the 
12C + 12C reaction rate’). We recommend an analytical expression for 
the reaction rate and for its upper and lower limits, based on the same 
formulae as reported in the REACLIB library25. This expression is valid 
in the temperature range 0.1 GK ≤ T ≤ 3 GK with an accuracy better 
than 0.7% (χ = .! 0 12 ), which refers to the maximum difference between 
the analytical function and the centroids of the experimental points. 
This is given by:

⟨ ⟩ ∑ ∑σ = = + +

+ + + +
= =

− − /

/ /

N v f a a T a T

a T a T a T a T

exp[

ln( )]
(1)A i i i i i i

i i i i

1
3

1
3

1 2
1

3
1 3

4
1 3

5 6
5 3

7

Parameters aij with 1 < i < 3 and 1 < j < 7 are given in Table 1, with 
subscripts ‘u’ and ‘l’ for the upper and lower limits. They result from  
a fit performed using the NUCASTRODATA toolkit (http://www.
nucastrodata.org/).

The total THM reaction rate was divided by the reference rate5. The 
resulting ratio is shown in Fig. 3. The black line represents the rate from 
the present work, with the grey shading defining the region fixed by the 
total uncertainty (Methods section ‘Numerical values of the 12C + 12C 
reaction rate’), whereas the red line refers to the reference rate5.

The light-blue shading shows the temperature range relevant for 
superbursts (about 0.4–0.5 GK), the light-red shading highlights typical 
temperatures for hydrostatic carbon burning in massive stars (about 
0.6–1.0 GK in the core and up to 1.2 GK in the shell, depending on the 
stellar mass), whereas the light-green shading marks the temperatures 
of explosive carbon burning (about 1.8–2.5 GK). As shown in Fig. 3, 
the reaction rate changes below 2 GK with an increase with respect 
to the reference non-resonant one5 from a factor of 1.18 at 1.2 GK 
(***P < 0.001) to a factor of more than 25 at 0.5 GK (****P < 0.00001).  
The latter increase, mainly due to the resonances around Ecm = 1.5 MeV,  
supports the conjectured fiducial value3 required to reduce the  
theoretical superburst ignition depths in accreting neutron stars by a 
factor of 2 for a range of realistic parameters and core neutrino emissivities.  
This change matches the observationally inferred ignition depths and 
can be translated into an ignition temperature below 0.5 GK, com-
patible with the calculated crust temperature. In other words, carbon 
burning can trigger superbursts. A similar decrease in temperature is 
obtained by using the crust Urca shell neutrino emissivities26, recently 
invoked to explain the cooling of the outer neutron star crust, while 
thermally decoupling the surface layers from the deeper crust. Under 
this hypothesis, a revision of current superburst models and predicted 
light curves is required and our finding could represent the missing 
heat source in the standard carbon ignition scenario.

In the hydrostatic carbon burning regime, the present rate change 
will lower the temperatures and densities at which 12C ignites in mas-
sive post-main-sequence stars. We make use of stellar modelling8 for 
core carbon burning of a star of 25 solar masses to determine that the 
ignition temperature and density would decrease to 10% and 30% 
respectively. This would reduce the neutrino losses, thus causing the 
carbon burning stage to occur for a lifetime (of the carbon burning 
phase) longer by up to a factor of 70. The new rate would also affect 
abundances of species that are the main fuel for subsequent evolution-
ary phases. However, such abundances are influenced also by the ratio 
of the α to p yields if it deviates from unity. From the present experi-
ment, the average value of this ratio is around 2. In particular, at 0.8 GK 
this ratio is 1.6 ± 0.4, and it becomes 2.2 ± 0.6 at 2 GK. The 12C + 12C 
rate is also the most important nuclear physics input governing the 
minimum stellar mass Mup required for hydrostatic carbon burning to 
occur. Mup is fundamental to our understanding, for instance, of the 
evolution of supernova progenitors and the white dwarf luminosity 
functions. From the present result, we consider that the present value 
of Mup will not be strongly affected, in contrast to what has been pre-
dicted27,28 when assuming a much larger increase (up to nine orders 
of magnitude) in the reaction rate, but it is worth noticing that stel-
lar models are also very sensitive to small changes of this parameter. 
However, a sound evaluation of Mup requires a better understanding 
of the ratio of the initial mass to the final core mass.

Below 0.4 GK the rate experiences a huge increase by up to a factor  
of 800 owing to the lowest-energy resonances occurring around  
Ecm = 1 MeV. It has been conjectured that the existence of such low- 
energy resonances might shift the ignition curve of type Ia  
supernovae to lower central densities3. This should be assessed  
for the various progenitor scenarios. Much additional work is needed 

Table 1 | Coefficients of the analytical function of the 12C + 12C reaction rate using equation (1)
aij f1 f2 f3 f1u f2u f3u f1l f2l f3l

ai1 1.22657 × 102 9.03221 × 101 2.28039 × 102 1.22687 × 102 9.03982 × 101 2.28056 × 102 3.21570 × 102 6.08741 × 102 3.14593 × 103

ai2    0.557112 −8.35888 −1.16039 × 101    0.557664 −8.35720 −1.15681 × 101 −0.815182 −1.42976 × 101 −2.26169 × 101

ai3 −905657 × 101 −6.17552 × 101 −2.40364 × 102 −9.05616 × 101 −6.17282 × 101 −2.40343 × 102 3.17671 × 101 3.43845 × 102 1.36110 × 103

ai4 −6.83561 × 101 −1.07514 × 102 −9.21375 × 101 −6.83178 × 101 −1.07358 × 102 −9.21156 × 101 −4.22173 × 102 −1.11874 × 103 −5.16494 × 103

ai5 1.42906 × 101 7.20344 × 101 1.25411 × 102 1.42891 × 101 7.20835 × 101 1.25484 × 102 5.23691 × 101 1.73098 × 102 7.85965 × 102

ai6 −2.43583 −1.37501 × 101 −3.25984 × 101 −2.46506 −1.38060 × 101 −3.24417 × 101 −6.35869 −2.33743 × 101 −1.29447 × 102

ai7    9.32623 −1.91793 × 101 −1.10903 × 102    9.35304 −1.91920 × 101 −1.10961 × 102 1.34509 × 102 3.60334 × 102 1.60224 × 103

Coefficients of the analytical function (equation (1)) of the 12C+12C reaction rate and of its upper and lower limits. They result from a fit of the numerical values given in Extended Data Table 2 using the 
reaction rate parameterizer from the NUCASTRODATA toolkit (http://www.nucastrodata.org/).
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Fig. 3 | 12C + 12C reaction rate ratio. Ratio between the total THM 
12C + 12C reaction rate (black line) and the reference one4 (red line). The 
grey shading defines the region spanned owing to the ±1σ uncertainties. 
The coloured shading marks typical temperature regions for carbon 
burning in different scenarios: light blue for superbursts from accreting 
neutron stars, light red for hydrostatic carbon burning in massive stars 
and light green for explosive carbon burning; comparison with the red line 
(non-resonant assumption) gives ***P < 0.001 in the region of hydrostatic 
burning and ****P < 0.00001 at superburst temperatures.
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Color shadings mark typical regions for C-burning  

Compared to CF88, the present rate increases from a factor of 1.18 at 1.2 GK to a 
factor of more than 25 at 0.5 GK 

	



 
•   Impacts of the New Carbon Fusion Cross Sections on Type Ia Supernovae (K. Mori 

et al. MNRAS 2018) 
 

The resonances found in the 12C+12C cross section result in a decrease of the carbon 
burning ignition temperature in the progenitors, with a reduction of contribution of the 
DD scenario to the SNe Ia rate. 
 
•  On the mass of supernova progenitors: the role of the 12C+12C reaction (O. Straniero 

et al. 2019 Springer Procs.) 
 
New stellar models with mass between 7 and 10 M⊙  
upper bound for the mass of the progenitors of CO white dwarfs (Mup ) reduced from 
8 to 7.5 M⊙  
 
lower bound for the mass of the progenitors of normal type II supernovae (M⋆ ) a bit 
less than 10 M⊙  
 
Small changes but very important for stellar models. 
 
Still a lot of applications to do … 
 
•  From nuclear side: try to find the missing low-lying states of the 12C+12C molecular 

rotational band 
 
 
 

 



However…
You cannot forget that THERE ARE experimental data! We CAN test theory to see if it is compatible with measurement

From the ratio: S*TRUE / S* we can deduce the trend of the correction factor, essentially an exponential

The «TRUE» S* does not reproduce the experimental data!

 
The drop can be due to an incomplete inclusion 
of Coulomb effects (only those from 
intermediate channel are in) 
 
With a full account of intermediate and final 
state Coulomb effects, the drop disappears. 
 	

In arXiv you can find a REJECTED comment on this work, pointing out that the S(E)* factor 
is overestimated as Coulomb interaction is not properly accounted for: 

From the ratio S*_theo/S*_exp 
at low energy we can deduce the 
trend of the correction factor, 
essentially an exponential which 
gives no agreement with direct 
data 

Unsubstantiated claims 
In arXiv you can find a REJECTED comment on this work, 

pointing out that the S* factor is overestimated as Coulomb 

interaction is not properly accounted for:

S*TRUE =

Panel (a): S∗(E)-factors for the reaction 12C + 12C → α0 + 20Ne. 

Panel (b): S∗(E)-factors for the reaction 12C + 12C → α1 + 

20Ne(1.63MeV) 

Panel (a): S∗(E)-factors for the reaction 12C + 12C → p0 + 23Na. 

Panel(b): S∗(E)-factors for the reaction 12C + 12C → p1 + 

23Na(0.44MeV). 

Blue dash-dotted line: renormalized THM S∗(E)-factor with 

pure Coulomb distortions 

Magenta dash-dotted-dotted line: renormalized THM 

S∗(E)-factor with Coulomb plus nuclear distortions 



… indeed including the Coulomb renormalization parameter 	
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4 Discussion

Using a few-body formalism we have derived an expression for the amplitude of the TH

reaction a+A→ s+ F∗ → s+ b+B proceeding though a resonance in the intermediate
binary subsystem s+ F∗. The Coulomb interactions in the intermediate binary and final

three-body states have been taken into account explicitly using the three-body approach.
The following important conclusions can be drawn:

1. The amplitude of the TH reaction proceeding through the intermediate resonance F in

the binary subsystem has in the denominator the resonant energy factor E0(bB)−EbB( f )−

iΓ /2. However, a conventional Breit-Wigner resonance pole [E0(bB)−EbB( f )− iΓ /2]−1

is converted into the branching point singularity [E0(bB) − EbB( f )− iΓ /2]−1−iζ . This
transformation of the resonance behavior of the TH reaction amplitude is caused by the

Coulomb interaction of the particle s with the resonance in the intermediate state and
with products b and B of the resonance.

2. The reaction amplitude can be rewritten as

MR =−
i

4π

√
µbB

kR(bB)

eiδ p(k0(bB))Γ
1/2

bB Mtr

E0(bB)−EbB( f )− i Γ
2

NC(EbB( f ), ζ ), (74)

where

NC =
Γ (1+ iηbs)Γ (1+ iηBs)

Γ
(
1+ i[ηbs +ηBs]

) F
(
− iηBs,−iηbs,1;−1

)
[−γ(0)]iηbs (−ν)iηBs

×

[
E0(bB)−EbB( f )− i

Γ

2

]−iζ

(75)

is the Coulomb renormalization factor which is equal to unity when the Coulomb inter-
actions are turned off.

3. As we have mentioned in Introduction, the final-state Coulomb effects have an universal
feature and should be taken into account whenever one considers nuclear or atomic

reactions leading to the three-body final states. If ηbs, ηBs and Re(ηR) have the same
sign, the Coulomb s−F∗ interaction in the intermediate state weakens the impact of the

final state Coulomb s−b and s−B interactions because the intermediate state Coulomb
parameter ηR is subtracted from the final-state Coulomb parameters ηbs +ηBs, see Eq.
(73). For example, if the Coulomb s−F∗ interaction in the intermediate state is turned

off, that is ηR = 0, the resonance behavior of the TH reaction amplitude coincides with
that from the papers [7,8], where the angular and energy dependences of the electrons

ejected from autoionizing resonances induced by collisions of fast protons with atoms
were investigated.

4. The triply differential cross section for the TH reaction is given by

d3σ

dΩksF( f )
dΩkbB( f )

dEsF( f )
= σ0

ΓbB

[E0(bB)−EbB( f )]2 +Γ 2/4

πζ

shζ
e2ζ arctan 2E

Γ , (76)

where Ωki j( f )
is the solid angle corresponding to the direction of the relative momentum

ki j( f ) of the partiles i and j in the final state, E = E0(bB)−EbB( f ) = EsF( f )−E0(sF( f )).

Here we singled out the part of the triply differential cross section that determines the
resonance line shape, width, shift and peak value as functions of the Coulomb factors.

This part appears due to the Coulomb interactions in the intermediate and final states.
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THM (this holds for indirect in general) measurements are unique tools to 
investigate reactions on energy ranges difficult to study otherwise 
 
still great potential for future applications (also beyond astrophysical 
applications) 
 
However, when possible, a joint work with direct and indirect measurements 
is the best choice to ensure accurate normalization and reaction rates for 
astrophysical applications 
 
 
 

Conclusions	

Thank	you	for	your	attention!	





Comparison between the experimental momentum distribution and the theoretical one 

Solid line: momentum distribution of d inside 14N from the Wood-Saxon 12C-d 
bound state potential with standard geometrical parameters 
r0=1.25 fm, a=0.65 fm and V0=54.427 MeV  
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On-the-energy-shell bound state wave number ((see I.S. Shapiro, 
Soviet Physics Uspekhi Vol. 10, n. 4 (1968) and earlier works): 
(2µd12CBd12C)1/2=181 MeV/c.  
Staying within this value is the condition for the QF mechanism to 
be dominant 

Plane Waves reliable also because: 
 
-  pd < (2µd12CBd12C)1/2=181 MeV/c à Proved that the 

shape of the momentum distribution is insensitive 
to the theoretical framework used for its 
derivation (agreement between PWA and DWBA)  

 
-  the 14N beam energy of 30 MeV corresponds to a 

quite high momentum transfer qt=500 MeV/c 
giving an associate de Broglie wavelenght of 0.4 fm 
(< 3 fm=12C+d) 



                       At low relative energies the S(0) for a direct capture reaction a+A  à  B+γ                                    
	
	
	
  
 
CB

aA  is the so called ANC that specifies the tail of the B  overlap function in the a+A channel  

																		For a peripheral transfer reaction X+A à Y+B into a bound state of B,   
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The ANC CB
aA   can be obtained normalising the calculated angular distribution to 

the experimental one.  What we need: precise optical potentials and one 
additional ANC (from elastic scattering angular distributions) 
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