

Competition between long- range (collective) and short-range (pairing) correlations in twoneutron transfer reactions

Jesús Lubián Ríos

Institute of Physics Federal Fluminense University

Outline

Nuclear spectroscopy via transfer reactions between heavy ions ➤ The (¹⁸O,¹⁶O) reaction

Experimental results about ${}^{12,13}C({}^{18}O,{}^{16}O){}^{14,15}C,$ ${}^{16}O({}^{18}O,{}^{16}O){}^{18}O, {}^{64}Ni({}^{18}O,{}^{16}O){}^{66}Ni$ and ${}^{28}Si({}^{18}O,{}^{16}O){}^{30}Si$ reactions @ 84 MeV incident energy

CRC and two-step DWBA calculations
 Microscopic cluster calculations

Brief introduction. (t,p) reactions

Volume 70B, number 4

PHYSICS LETTERS

24 October 1977

SPECTROSCOPY OF ¹⁶C *

H.T. FORTUNE, R. MIDDLETON, M.E. COBERN, G.E. MOORE, S. MORDECHAI, R.V. KOLLARITS Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

and

H. NANN [‡], W. CHUNG and B.H. WILDENTHAL Michigan State University, East Lansing, Michigan 48823, USA

Received 30 June 1977

The ¹⁴C(t, p)¹⁶C reaction locates five new states in ¹⁶C, at excitation energies of 3020 ± 15 , 3983 ± 10 , 4136 ± 10 and 6109 ± 15 keV, in addition to the g.s. and 1.76 MeV states. The 3.02 and 3.98 MeV states appear to be the second 0⁺ and 2⁺ 2p-2h states, respectively. The 4.14 MeV state has $J^{\pi} = 4^+$ and the 6.11 MeV state has $J^{\pi} = 2^+$, 3^- , or 4^+ .

E _x (Ι ^π)	Ν
0.0 (0+)	300
1.766 (2+)	400
3.020 (0+)	300
3.983 (2+)	400
4.136 (4+)	360

Main reasons for these discrepancies:

- the use of oversimplified triton wave functions
- the use of the zero-range approximation
- the use of only simultaneous transfer.
- Numerical simplifications to solve six-dimension integrals to determine transition amplitudes???

The triton beam are not longer produced for safety reasons!

Nuclear spectroscopy via (180,160) reaction

The (¹⁸O,¹⁶O) reactions are good candidates to show the role of **pairing interaction** thanks to

- The presence of a correlated pair of neutrons in the ¹⁸O_{g.s.} wave function
- > The very low polarizability of the ¹⁶O core
 - ¹⁴C is a good benchmark for considerations

on the reaction mechanism, ⁶⁴Ni and ²⁸Si are good benchmark for studying long-range vs short-range correlations

Studies on both ¹³C(¹⁸O,¹⁷O)¹⁴C **1n transfer** and ¹²C(¹⁸O,¹⁶O)¹⁴C **2n transfer**

- Strong selectivity in the populated states
- Absolute cross sections reproduced without any scaling factor

M. Cavallaro et al., PRC 88 (2013) 054601

Theoretical models and main ingredients

Exact finite range CRC and two-step CCBA calculations

Sao Paulo Potential (**SPP**) used in the optical model

L.C. Chamon, et al., PRL 79 (1997) 5218

- Wood-Saxon form factors were used to generate single particle and cluster wave functions. Depth were adjusted to fit the exp. separation energies
- > **Deformation parameters** for collective excitations
- Spectroscopic Amplitudes by shell-model in the 1p_{1/2}, 1d_{5/2}, 2s_{1/2} model space (zbm interaction)

A.P. Zuker, et al., PRL 17 (1969) 983

Theoretical models and main ingredients

The CRC equations are in many cases of the form

$$\begin{split} \left[E_{\kappa pt} - T_{\kappa L}(R_{\kappa}) - U_{\kappa}(R_{\kappa}) \right] f_{\alpha}(R_{\kappa}) &= \sum_{\alpha', \Gamma > 0} i^{L'-L} V_{\alpha:\alpha'}^{\Gamma}(R_{\kappa'}) f_{\alpha'}(R_{\kappa'}) \\ &+ \sum_{\alpha', \kappa' \neq \kappa} i^{L'-L} \int_{0}^{R_{m}} V_{\alpha:\alpha'}((R_{\kappa}), R_{\kappa'}) f_{\alpha'}(R_{\kappa'}) dR_{\kappa'} \end{split}$$

Single nucleon states are given by

$$\phi_{JM}(\xi_c, \mathbf{r}) = \sum_{\ell j I} A_{\ell s j}^{jIJ} \left[\phi_I(\xi_c) \varphi_{\ell s j}(\mathbf{r}) \right]_{JM}$$
$$= \sum_{\ell j I, m \mu m_s m_\ell} A_{\ell s j}^{jIJ} \langle j m I \mu | JM \rangle \phi_{I\mu}(\xi_c) \langle \ell m_\ell s m_s | j m \rangle Y_\ell^{m_\ell}(\hat{\mathbf{r}}) \phi_s^{m_s} \frac{1}{r} u_{\ell s j I}(r)$$

and are the solution of

$$[T_{\ell}(r) + V(r) + \epsilon_I - E]u_{\ell s j I}(r) + \sum_{\ell' j' I', \ \Gamma > 0} V^{\Gamma}_{\ell s j I : \ell' s j' I'}(r)u_{\ell' s j' I'}(r) = 0$$

Theoretical models and main ingredients

Independent coordinate model

$$\begin{split} \varphi_{12}(\mathbf{r}_{1},\mathbf{r}_{2}) &= \sum_{i} c_{i} |(\ell_{1}(i),s_{1})j_{1}(i),(\ell_{2}(i),s_{2})j_{2}(i); J_{12}T\rangle \\ &\to \sum_{i} c_{i} \sum_{L \ell S j} |L,(\ell,(s_{1}s_{2})S)j;J_{12}T\rangle \phi_{L(\ell S)j}^{J_{12}T,i}(r,\rho) \\ \phi_{L(\ell S)j}^{J_{12}T,i}(r,\rho) &= \langle L,(\ell,(s_{1}s_{2})S)j;J_{12}T| (\ell_{1}(i),s_{1})j_{1}(i),(\ell_{2}(i),s_{2})j_{2}(i); J_{12}T\rangle \\ &\times \langle [Y_{L}(\hat{\mathbf{r}})Y_{\ell}(\hat{\rho})]_{\lambda} | [\varphi_{\ell_{1}s_{1}j_{1}}(\mathbf{r}_{1})\varphi_{\ell_{2}s_{2}j_{2}}(\mathbf{r}_{2})]_{J_{12}T} \rangle \end{split}$$

and the radial integral overlaps are derived from using Moshinsky harmonic oscillator expansion

Theoretical results for other channels

Presence of two-neutron pairing correlations in other ¹⁴C states

M. Cavallaro et al., PRC 88 (2013) 054601

Extreme Cluster Model

(CRC) ◆ Relative motion of the 2n system frozen and separated by the c.m.

Only the term with the 2n coupled to S = 0 participates to the transfer

Sequential transfer (DWBA)

Introducing the ¹⁷O +¹³C intermediate partition

Independent coord.

(CRC)

CRC -1n transfer

No arbitrary scaling

New works published in 2016-2017

What happens if we add a neutron to the ¹⁴C system?

Study of the ¹³C(¹⁸O,¹⁶O)¹⁵C reaction at 84 MeV incident energy

D. Carbone et al., PRC 95, 034603 (2017)

¹⁵C energy spectrum

Same states populated in the (t,p) reactions

Strong population of states with ¹³C + 2*n* configurations

Population of the Giant Pairing Vibration above S_{2n}

- F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)
- D. Carbone, EPJ Plus (2015) 130:143

Energy resolution ~ 200 keV

ARTICLE

Received 28 Dec 2014 | Accepted 24 Feb 2015 | Published 27 Mar 2015

DOI: 10.1038/ncomms7743

OPEN

Signatures of the Giant Pairing Vibration in the $^{14}\mathrm{C}$ and $^{15}\mathrm{C}$ atomic nuclei

F. Cappuzzello^{1,2}, D. Carbone², M. Cavallaro², M. Bondi^{1,2}, C. Agodi², F. Azaiez³, A. Bonaccorso⁴, A. Cunsolo², L. Fortunato^{5,6}, A. Foti^{1,7}, S. Franchoo³, E. Khan³, R. Linares⁸, J. Lubian⁸, J.A. Scarpaci⁹ & A. Vitturi^{5,6}

S.No.	Excitation energy (MeV) (present work)	Excitation energy (MeV) (values from ref. 38)	J ^π (*)
¹⁵ C sta	tes		
1	0.00 ± 0.02	0	1/2+
2	0.73 ± 0.02	0.7400	5/2+
3	3.12 ± 0.02	3.103	1/2 -
4	4.21 ± 0.02	4.220	5/2-
5	4.65 ± 0.02	4.657	3/2-
6	5.87 ± 0.02	5.866	1/2 -
7	6.85 ± 0.02	6.841	7/2-
8	7.36 ± 0.02	7.352	9/2-
9	8.47 ± 0.02	8.47	1/2+, 3/2+, 5/2+
10	9.06 + 0.02	9.00	(from ref. 39)
11	13.7 ± 0.1	2.00	1/2 ⁻ (present work)
¹⁴ C sta	tes		
1	0.00 ± 0.02	0	0+
2	6.10 ± 0.02	6.0938	1-
3	6.71±0.02	6.7282	3-
4	7.00 ± 0.02	7.0120	2+
5	7.36±0.02	7.3414	2 -
6	8.33 ± 0.02	8.3179	2+
7	9.81±0.02	9.7460	0+
8	10.43 ± 0.02	10.425, 10.498	2+,3-
9	10.73 ± 0.02	10.736	4+
10	12.88 ± 0.02	12.963	3 -
11	13.96 ± 0.02	14.05	
12	16.42 ± 0.02	16.43	6 ⁺ (from ref. 40)
13	16.74 ± 0.02	16.715	6 ⁻ (from ref. 40)
14	16.9 ± 0.1		0 ⁺ (present work)

Figure 3 | Comparison between the CRC calculations and the measured cross section for the ¹⁴C resonance at 16.9 MeV. The calculations are performed at 12 MeV excitation energy for L = 0 to 5 and are normalized to coincide at $\theta_{CM} = 9^{\circ}$. The error bars correspond to the combination of uncertainties coming from the solid angle determination, the statistical error and the background subtraction (see text)

Supplementary Figure 7 – Comparison with calculations. Discretized continuum scheme calculations for the L = 0 case (red line) and experimental cross section angular distribution for the ¹⁴C resonance at 16.9 ± 0.1 MeV. No scaling factors are used.

CRC and DWBA calculations

Extreme cluster model

- Relative motion of the 2n frozen and separated by the c.m.
- Only the term with the 2n coupled to S = 0 participates to the transfer
- S.A. = 1 for all configurations

Independent coordinate model

• The transfer is described taking into account spectroscopic information obtained by shell model calculations

Sequential transfer (DWBA)

• Introducing the ¹⁷O + ¹⁴C intermediate partition

Coupling scheme

CRC and DWBA calculations

Extreme cluster model overestimate the cross section (S.A. = 1) **Independent coordinate** model describes quite well the cross section **Sequential transfer (DWBA)** underestimate the cross section

Microscopic cluster calculations

Wave functions for two particles in an harmonic oscillator common potential (*j-j* coupling)

Two neutron amplitudes – zbm interaction															
Initial state	$j_1 j_2$	J ₁₂	Final state	Spectr. Amp.	n	I	N	L	٨	S	Spec. Amp. (c.m.)				
	(p _{1/2} s _{1/2}) 0			1	0	2	1	1	1	-0.292					
			-0.641	1	1	1	2	1	1	0.338					
					1	1	2	0	1	1	-0.075				
	1 (p _{1/2} s _{1/2}) 1		¹⁵ C _{g.s.} (1/2+)						1	0	2	1	1	0	0.292
¹³ C _{g.s.} (1/2 ⁻)				/2+)	1	1	1	2	1	0	-0.338				
			-1 110	1	1	2	0	1	0	0.075					
							-1.110	1	0	2	1	1	1	-0.413	
				1	1	1	2	1	1	0.477					
				1	1	2	0	1	1	-0.107					

Microscopic cluster calculations

Extreme cluster model

Microscopic cluster 1s

• Taking into account configurations with n = 1 | = 0

Microscopic cluster 1s + 1p

Taking into account configuration with n = 1 | = 0, 1

- Transitions to ground and 3.103 MeV states reproduced rather well with 1s + 1p waves
- Transition to 0.74 MeV state probably needs more configurations

Microscopic cluster calculations

New works published in 2016-2017

Test of model space for the $<^{18}O|^{16}O>$ projectile overlaps

Study of the ¹⁸O(¹⁶O,¹⁸O)¹⁶O reaction at 84 MeV incident energy zbm vs psdmod interactions

Model space	valence orbitals
zbm (¹² C-core)	1p _{1/2} , 1d _{5/2} , 2s _{1/2}
psdmod (⁴ He core)	1p _{3/2} , 1p _{1/2} , 1d _{5/2} , 2s _{1/2} , 1d _{3/2}

Experimental results

TABLE I. States populated in the ${}^{16}O({}^{18}O, {}^{16}O){}^{18}O$ reaction at 84 MeV (see Fig. 1).

Label	Energy (MeV)	J^{π}
1	0.00	0+
2	1.98	2^{+}
	3.55	
3	3.63	
	3.92	
4	4.46	1-
	5.10	
	5.26	
5	{ 5.34	
	5.38	
	5.53	
	6.20	
6	6.35	
0	6.40	
	6.88	
7	7.12	4+
8	8.28 ^a	3-
9	9.03 ^a	
10	∫10.40 ^a	
10	1 0.61 ^a	

^aThe most intense states according to (t,p) reaction [37] were considered.

M. J. Ermamatov et al., PRC 94 (2016) 024610

g.s. only S=0 (A) 2+ S=0 (A) or (P)

Extreme cluster model works

For the lower states of projectile overlaps the zbm model- space is enough. The study of the higher excited states is in progress

M. J. Ermamatov et al., PRC 94 (2016) 024610 P

New works in progress (some results)

Study of the ¹⁸O(⁶⁴Ni,⁶⁶Ni)¹⁶O reaction at 84 MeV incident energy

Model space	valence orbitals
protons	1p _{1/2} , 1d _{5/2} , 2s _{1/2}
neutrons	$1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2, 1}, 1g_{7/2}$

Microscopic results: g.s.: IC results are better, specially in the bell-shaped region. Same order: one and two step. 2⁺ : Long-range correl. (coll.) dominates over

the short-range (pairing)

Cluster model is not good for ^{64,66}Ni

Microscopic results:

g.s.: IC results are
better, specially in the
bell-shaped region.
2⁺ : Long-range correl.
(coll.) dominates over
the short-range (pairing)

B. Paes et al PRC 96.044612 (2017)

IBM2 for 64,66Ni and IBFM for 65Ni

Nucleus	B(E2);	0+	!	2 ⁺	(e^2b^2)
¹⁴ C		0.	00	18	
¹⁸ O		0.	00	45	
²⁸ Mg		0	.03	35	
⁶⁶ Ni		0	.06	50	
⁷⁶ Ge		0	.27	70	

Small for ¹⁴C ¹⁸C Big for ²⁸Mg ⁶⁶Ni ⁷⁶Ge

Study of the ¹⁸O(²⁸Si,³⁰Si)¹⁶O reaction at 84 MeV incident energy

Мо	del space (⁴ He o	core)	valence	orbitals (si	milar to N	Ni)
Prot	tons		1p _{3/2} , 1p	0 _{1/2} , 1d _{5/2} , 2	s _{1/2} , 1d _{3/2}	
neu	trons		1p _{3/2} , 1p	o _{1/2} , 1d _{5/2} , 2	s _{1/2} , 1d _{3/2}	
(a)	E(MeV); J ^π	E(MeV); J ^π	(b) Е(ма	ev); J ^π E	(MeV); J ^π 3.843 (5/2 ⁻)	E(MeV); J ^π
Projectile Overlaps	1.982 (2 ⁺) 0.0 (0 ⁺)	6.130 (3 ⁻) 0.0 (0 ⁺) ¹⁶ O	0.0 0 ⁸¹		8.055 (1/2 ⁻) 0.871 (1/2 ⁺) 0.0 (5/2 ⁺) ¹⁷ O	6.130 (3 ⁻) 0.0 (0 ⁺) ¹⁶ O
Target Overlaps	$4.617 (4^{+})$ $1.779 (2^{+})$ $0.0 (0^{+})$ $2^{8}Si$	3.498 (2 ⁺) 2.235 (2 ⁺) 0.0 (0 ⁺) ³⁰ Si	4.617 4.617 1.779 0.0 28Si	(4 ⁺) (2 ⁺) (0 ⁺)	.067 (5/2 ⁺) 2.425 (3/2 ⁺) 2.028 (5/2 ⁺) 1.273 (3/2 ⁺) 0.0 (1/2 ⁺) ²⁹ Si	3.498 (2 ⁺) 2.235 (2 ⁺) 0.0 (0 ⁺) ³⁰ Si

Microscopic results: g.s.: Two-step DWBA results are better. Same order: one and two step. 2⁺ : Long-range correl. (coll.) dominates over the short-range (pairing) Si* the same results as the 2⁺ state

Nucleus	B(E2);
	$0^+ \to 2^+ (e^2 b^2)$
$^{14}\mathrm{C}$	0.0018
¹⁸ O	0.0045
^{28}Mg	0.035
³⁰ Si	0.022
⁶⁶ Ni	0.060
76 Ge	0.270

Does our theoretical calculations describe other observables?

- Elastic scattering
- Inelastic scattering

2n transfer. Heavier target, other authors

G. Potel et al.PRL 107, 092501 (2011)

		132 G () $130 G$ ()			
	5.11 MeV	6.1 MeV	10.07 MeV	15.04 MeV	$\sin^{152} \operatorname{Sn}(p, t)^{150} \operatorname{Sn}(g.s.)$
Total	1.29×10^{-17}	3.77×10^{-8}	39.02	750.2	integrating
Successive	9.48×10^{-20}	1.14×10^{-8}	44.44	863.8	$0^{\circ} \leq \theta \leq 80^{\circ}$
Simultaneous	1.18×10^{-18}	8.07×10^{-9}	10.9	156.7	$0 \leq v_{c.m.} \leq 80$
Nonorthogonal	2.17×10^{-17}	7.17×10^{-8}	22.68	233.5	
Nonorthogonal + simultaneous	1.31×10^{-17}	3.34×10^{-8}	3.18	17.4	
Pairing	1.01×10^{-19}	$6.86 imes 10^{-10}$	0.97	14.04	

2n transfer. Heavier target, other authors

B.M. Bayman & Jongsheng Chen, PRC26, 1509 (82)

Conclusions and outlooks

^{12,13}C(¹⁸O,¹⁶O)¹⁵C, ¹⁶O(¹⁸O,¹⁶O)¹⁸O, ⁶⁴Ni(¹⁸O,¹⁶O)⁶⁶Ni,
 ²⁸Si(¹⁸O,¹⁶O)³⁰Si, at 84 MeV incident energy
 Four models were used to calculate the cross section:

- ✓ Extreme cluster
- ✓ Independent coordinate
- ✓ DWBA
- ✓ Microscopic cluster (only for 13 C)

> no need for any "unhappiness" factor to reproduce the absolute cross sections

> In ¹³C importance of a two-neutron correlation in the nuclear wave function, the extra neutron does not destroy the correlations observed in the ¹⁴C case

Dominance of the 1s and 1p waves in the two-neutron cluster internal wave function

>Adequacy of zbm interaction for low-lying overlaps of the projectile were established for the projectile.

Dominance of long-range correlations for the excited 2⁺ state of ⁶⁶Ni over the short-range pairing correlations. The opposite for the g.s.
 Dominance of long-range correlations in all states of ³⁰Si.

Outlooks:

Include other waves in the microscopic cluster calculations
 Enlarge the model space for higher energy transitions (d_{3/2})
 Describe high excited states of the projectile.
 Study the 2p and np transfers to study the pairing correlations.

REACTIONS SCHEME CONCERNING THE ¹¹⁶Cd(²⁰Ne, ²⁰O) ¹¹⁶Sn

Very recent results

J. Lubian NSD2019, Venice, Italy May 13-17, 2019

Very recent results

⁷Be + ⁹Be @ 23.1 MeV

2n pairing correlation is not an exclusive property of the inert-core + 2n configuration

Working group

E. N. Cardozo, M. Ermamatov, P. de Faria, J. L. Ferreira, D. Mendes Jr., R. Linares, <u>J. Lubian</u>, B. Paes, V. Sagatto. *Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, Brazil*

A. Gargano Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Italy

S. Lenzi, A. Vitturi Istituto Nazionale di Fisica Nucleare – Sezione di Padova, Italy

C. Agodi, S. Calabrese, D. Carbone, M. Cavallaro, F. Cappuzzello, A. Foti, G. Santagati Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Italy Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Italy

E. Santopinto, R. Magana, H. García-Tecocoatzi Istituto Nazionale di Fisica Nucleare – Sezione di Genova, Italy

E. Crema, R. Lichtenthaler Istituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil

Thank you

Nuclear mean field and residual interaction

original Hamiltonian $H = T^{(1)} + V^{(2)} + V^{(3)}$

add and subtract a 1-body "mean field potential" $V^{(1)}$ (derive from Hartree-Fock theory)

$$H = T^{(1)} + V^{(1)} + V^{(2)} + V^{(3)} - V^{(1)}$$

regroup and separate terms

$$H = H_{mf} + H_{res}$$
$$H_{mf} = T^{(1)} + V^{(1)}$$
$$H_{res} = V^{(2)} + V^{(3)} - V^{(1)}$$

complete many-body Hamiltonian

mean field Hamiltonian, 1-body central field

residual interaction, "small"