Building a coherent physics picture around N=50 towards ⁷⁸Ni

A Gottardo INFN Laboratori Nazionali di Legnaro

Istituto Nazionale di Fisica Nucleare

OUTLINE

- Which shell gap ? The N=50 case
- N=50 «spectroscopic» gap
- Lifetime measurements around N=50 close to ⁷⁸Ni
- Intruder configurations as probes of shell structure
- Low-lying vs_{1/2} shell and possible consequences
- Perspectives: a common physics driven by pseudo-spin symmetry ?

Shell closures: what is their origin ?

J. Duflo et A. P. Zuker, Phys. Rev. C 59, R2347 (1999)

-the true origin of spin-orbit shell closures ? -the role of the 3-body forces

3-body interactions produce "naturally" this mechanism A. P. Zuker, Phys. Rev. Lett. 90, 042502 (2003)

3-body generating SO gaps:

- N=14 in oxygen
- N=28 in calcium

T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010), J. D. Holt et al. arXiv :1009.5984v3 [nucl-th] (2012)

The N=50 region: a testing ground for shell structure

The N=50 shell closure: which gap ?

Reduction of the N=50 spherical MASS GAP from N=51 isotones mass

M.-G. Porquet and O. Sorlin, Phys. Rev. C 85, 014307 (2012)

p-h states across N=50 in N=49 and N=50 isotones: minimum at Z=32

SPECTROSCOPIC GAP

K. Sieja et F. Nowacki, Phys. Rev. C 85, 051301(R) (2012)

E (MeV)

N=50 breaking 5⁺ and 6⁺ states

In-beam lifetimes measurements

Results: suppressed B(M1)

 LSSM calculations with LNPS are ongoing, first results seems not in disagreement with experimental data

In-beam lifetimes measurements: N=49, 51 odd-odd nuclei

N=51 odd-odd nuclei: results

1408 keV lifetime determination with sum of three distances

D. Dal Santo, G. Valerin University of Padova students

⁸⁴As scheme
built based on
γγ coincidences:

Nuclide	E_{γ} [keV]	Transition	$\tau[ps]$	<i>B</i> (Ε. Μ λ) [W.u.]
⁸⁶ Br	331	$5^- \to 4^- (M1)$	7.4 ± 1.8	$1.2\pm0.3\cdot10^{-1}$
	194	$8^+ \rightarrow 7^+$ (M1)	$12.6_{-4.5}^{+8.2}$	$3.5^{+1.2}_{-2.2} \cdot 10^{-1}$
⁸⁴ Br	972	$7^+ ightarrow 7^-$ (E1)	$4.1^{+5.4}_{-2.8}$	$1.4^{+0.9}_{-1.4} \cdot 10^{-4}$
	530	$7^- \rightarrow 6^- (M1)$	$25.9^{+18.1}_{-8.8}$	$8.2^{+2.8}_{-5.7} \cdot 10^{-3}$
⁸⁴ As	1408	$7^+ \rightarrow 5^-$ (M2)	$7.2^{+4.5}_{-2.0}$	$5.9^{+2.4}_{-2.7} \cdot 10^{1}$
	313	$5^- \rightarrow 4^- (M1)$	43 ± 22	$2.4 \pm 1.2 \cdot 10^{-2}$
	1019	$6^- ightarrow 4^-$ (E2)	$3.8^{+2.4}_{-1.7}$	$8.9^{+4.0}_{-5.6}\cdot 10^{0}$
	218	unknown	9.0 ± 3.0	
⁸² As	278	unknown	6.6 ± 2.0	
	656	unknown	$9.8^{+5.5}_{-3.4}$	
	410	unknown	> 40	
⁸⁰ Ga	401	unknown	$12.5^{+9.4}_{-4.7}$	

Large B(E2) value in N=52 ⁸⁴Ge

- Monotonic increase of the B(E2) along N=52: no midshell maximum ?
- Is the large B(E2) a signature of an intruder configuration in ⁸⁴Ge ?

Shell structure at N=50 NSD2019

p-h intruder states as probes of gap

Results on even-even N=48 isotones

A. Gottardo, D.Verney et al., Phys. Rev. Lett. 116, 182501 (2016)

14/26

First Spectroscopy of ⁷⁸Ni

R. Taniuchi et al., Nature 569, 53–58 (2019)

- 2⁺ energy at 2.6 MeV
- Intruder configuration (2p-2h, 4p-4h) at low energy, predicted by LSSM

What about the large B(E2) in ⁸⁴Ge?

Broken N=50 core

C. Delafosse et al. Phys. Rev. Lett. 121 192502(2018)

T. Nikšić, P. Marević, and D. Vretenar, Phys. Rev. C89, 044325 (2014)

Intruder states in N=49 isotones (1)

C. Wraith et al., Physics Letters B 771 (2017) 385-391

Intruder states (1p-2h) in N=49 states:

- Minimum at Z=34
- Inversion 1/2⁺ 5/2⁺
- Pure $s_{1/2}$ wave function ? Shape ?

Beyond N=50

N=50 shell closure

What's next

Intruder states in N=49 isotones (2)

X. F. Yang et al. Phys. Rev. Lett. 116, 182502 (2016)

- 1. The $1/2^+$ state in ⁷⁹Zn has a dominant $v(g_{9/2}^{-2} s_{1/2})$ character
- 2. Large isomer shift. Interpreted as large intrinsic deformation ($\beta \sim 0.22$) of the intruder state, but the observable is <Q>

Lowering of the $s_{1/2}$ shell

Coupling to continuum: G. Hagen, Phys. Rev. Lett. 117, 172501 (2016)

Is $s_{1/2}$ the ground state in ⁸¹Zn ?

Low β feeding of the 5/2⁻ ground state in ⁸¹Ga: a unique FF transition ?

$\nu s_{1/2}$ shell and β decay ? Study at BEDO

Strong increase of PDR after N=50 in Ge, Zn, Ni linked to an increased skin thickness

 β-decay populates part of the pygmy dipole resonance

M. Sheck et al. : PRL 116, 132501 (2016)

S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90 (2013) 024303.

BEDO setup @ ALTO (IPNO) with large LaBr₃

- ^{80,83}Ga beams from ISOL ALTO
- Large LaBr₃, 2 clovers, 2 coaxial Ge

⁸³Ga - ⁸⁰Ga β decay: high energy

A. Gottardo et al, Phys. Lett. B 772 (2017) 359-362

In total 16(4)% of absolute γ strength beyond S_n in ⁸³Ge

 $3.5\%\ I_{\beta\gamma}$ in J.L. Tain et al. Phys. Rev. Lett., 115, 062502 (2015)

⁸³Ge: theoretical calculations of strengths

9000

I. Deloncle, Sophie Peru-Desenfants, Marco Martini DAM -CEA

Shell structure at N=50 NSD2019

Energy (keV)

Beyond N=50

Nuclear Pseudo-Spin Symmetry (PSS)

- Quasidegeneracy between
 (n, l, j= l +1/2) and (n-1, l-2, j= l+3/2)
 orbitals
- Dynamical symmetry in a relativistic mean field
- repulsive vector potential (350 MeV) cancels with medium-range attractive scalar potential (-400 MeV)

P. Alberto et al., Phys. Rev. Lett. 86, 5015 (2001)

A PSS doublet becomes inverted as a result of INCREASING diffusivity and DECREASING mass

Beyond N=50

What's next

Nuclear PSS along N=50

Conclusions

- Rich phenomenology around the N=50 shell closure: gap size behaviour, shape coexistence and collectivity, possible low-lying large E1
- Shell-model calculations help to extract N=50 gap size from p-h states: test on lifetimes of p-h states
- Odd-odd nuclei convey further information
- Lifetimes measurements on open-shell N=52 isotones point out increase of collectivity at Z=32
- Rapid lowering of the $vs_{1/2}$ shell, maybe g.s. at Z=30 already ?

Pseudo-spin symmetry could be the driving mechanism behind this phenomena

In the future: - probe of the s.p. space beyond N=50

- further investigation of shape coexistence and collectivity
- large radius of the $vs_{1/2}$ orbit ?

What's next

Perspectives for N=50 studies at LNL

γ-ray spectroscopy with AGATA and GALILEO (+ LaBr, plunger...) Heavy-ion and light particles detectors: PRISMA, GRIT, TRACE, Euclides...

ALPI-SPES yields (pps) Stable and exotic beams @ 10-15 MeV/u

• Cryogenic targets: solid ^{1,2}H , high density/liquid ^{3,4}He

Perspectives at LNL

- Stable and reaccelerated (10-15 MeV/u) radioactive beams from SPES (2023)
- γ -ray spectroscopy with AGATA and GALILEO (+ LaBr, plunger...)
- Heavy-ion and light particles detectors: PRISMA, GRIT, TRACE, Euclides...
- Cryogenic targets: solid ^{1,2}H , high density/liquid ^{3,4}He

Shell structure at N=50 NSD2019

TRIPL

In beam lifetimes measurements: N=51 odd-odd nuclei

D. Dal Santo, G. Valerin University of Padova students

Beyond N=50

Optimal configurations:

- 4 clovers (~ 3.5 4% eff. @ 1 MeV)
- 1 planar Ge for X rays

OR

- FAST timing configuration (2 LaBr + 2 Ge)

BEDO setup with large LaBr₃

What's next

⁸³Ge: Theoretical Calculations of Strengths

