

Nuclear structure studies via precision mass measurements

Anu Kankainen

Nuclear structure via mass measurements

IGISOL facility in the JYFL Accelerator Laboratory

JYFL Accelerator Laboratory

JYU.

FOUR ACCELERATORS MCC-30/15 K-130 CYCLOTRON **CYCLOTRON** 2 FAST 4 JYU? #jyflacclab JYFL Accelerator Laboratory @jyflacclab Seuraa sinua @jyflacclab TU VARIAN cLINAC2100 **1.7 MV PELLETRON**

IGISOL facility at JYFL Accelerator Laboratory

IGISOL (Ion Guide Separator On-Line)

- a fast and universal method to produce radioactive beams

JYFLTRAP – a cylindrical double Penning trap at IGISOL

(1) PURIFICATION TRAP - Selecting the ions

Mass-selective buffer gas cooling technique Savard et al., Phys. Lett. A 158, 247 (1991)

Ion's cyclotron resonance frequency:

B with a reference ion:

(2) PRECISION TRAP - Mass measurements

Time-of-Flight Ion Cyclotron Resonance (TOF-ICR) technique M. König et al., Int. J. Mass Spectrom. Ion Proc. 142, 95 (1995)

Nuclides measured with JYFLTRAP

JYFLTRAP:

- Over 340 nuclides measured
 - ~100 neutron-deficient
 - ~220 neutron-rich
 - ~20 stable
- More than 50 isomeric states
- Typical precisions: ~10 ppb

Neutron-rich rare-earth isotopes

Neutron-rich rare-earth isotopes

- 21 rare-earth isotopes measured
- 14 masses measured for the first time
- Mainly TOF-ICR, recently also PI-ICR
- Campaign I: *M. Vilén et al., PRL 120, 262701 (2018)*
- Campaign II: *in preparation*

Motivated by the rare-earth abundance peak in the astrophysical r process

Nuclear structure motivation: N=100?

Local maximum at N=100 - deformed shell closure? Suggested by mean-field calculations [L. Satpathy and S. Patra, Nucl. Phys. A 722, (2003) C24 & J. Phys. G 30 (2004) 771]

¹⁶⁴Gd (N=100) more rigid than ^{160,162}Gd Change in structure at N=98?

Two-neutron separation energies S_{2n}

Neutron separation energies S_n

Less odd-even staggering (weaker pairing) than predicted by the models

Neutron pairing

M. Vilén et al., PRL 120, 262701 (2018)

Empirical neutron pairing gap or odd-even staggering parameter

Experimental **neutron** pairing weaker than predicted by theoretical models when approaching the midshell!

Nuclei close to ⁷⁸Ni

Mass measurements close to N=40 and N=50

Measured several new isotopes close to N=40 and N=50 at JYFLTRAP

_																
⁷² As	⁷³ As	⁷⁴ As	⁷⁵ As	⁷⁶ As	⁷⁷ As	⁷⁸ As	⁷⁹ As	⁸⁰ As	⁸¹ As	⁸² As	⁸³ As	⁸⁴ As	⁸⁵ As	⁸⁶ As	⁸⁷ As	⁸⁸ As
⁷¹ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge	⁷⁹ Ge	⁸⁰ Ge	⁸¹ Ge	⁸² Ge	⁸³ Ge	⁸⁴ Ge	⁸⁵ Ge	⁸⁶ Ge	⁸⁷ Ge
⁷⁰ Ga	⁷¹ Ga	⁷² Ga	⁷³ Ga	™Ga	™Ga	⁷⁶ Ga	⁷⁷ Ga	⁷⁸ Ga	⁷⁹ Ga	⁸⁰ Ga	⁸¹ Ga	⁸² Ga	⁸³ Ga	⁸⁴ Ga	⁸⁵ Ga	⁸⁶ Ga
⁶⁹ Zn	⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	⁷⁵ Zn	⁷⁶ Zn	⁷⁷ Zn	⁷⁸ Zn	+m ⁷⁹ Zn	⁸⁰ Zn	⁸¹ Zn	⁸² Zn	⁸³ Zn	[#] ⁸⁴ Zn	⁸⁵ Zn
⁶⁸ Cu	⁶⁹ Cu	⁷⁰ Cu	⁷¹ Cu	⁷² Cu	⁷³ Cu	⁷⁴ Cu	⁷⁵ Cu	+m ⁷⁶ Cu	⁷⁷ Cu	⁷⁸ Cu	⁷⁹ Cu	[#] ⁸⁰ Cu [#] ⁸¹ Cu [#] ⁸² Cu [#] Copper Z=29				
⁶⁷ Ni	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	⁷¹ Ni	⁷² Ni	⁷³ Ni	⁷⁴ Ni	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni	[#] ⁷⁹ Ni	Nickel Z=28			
⁶⁶ Co	⁶⁷ Co	⁶⁸ Co	⁶⁹ Co	⁷⁰ C0	⁷¹ Co	⁷² Co	⁷³ Co	⁷⁴ Co	⁷⁵ C0	[#] ⁷⁶ Co	Cobalt Z=27	🗸 Done				
⁶⁵ Fe	⁶⁶ Fe	⁶⁷ Fe	⁶⁸ Fe	⁶⁹ Fe	⁷⁰ Fe	⁷¹ Fe	⁷² Fe	[#] ⁷³ Fe	[#] Fe	lron Z=26				• -		
N=40											T F					

L.C. Canete, S. Giraud, A. Kankainen, B. Bastin et al., in preparation

Phase-Imaging Ion Cyclotron Resonance technique (PI-ICR): resolving low-lying isomers

Two half-lives (TRISTAN): J. A. Winger et al, PRC 42, 954 (1990).

Mass of ⁷⁶Cu (638 ms state; ISOLTRAP): C. Guenaut et al., PRC 75, 044303 (2007); A. Welker et al., PRL 119, 192502 (2017).

✓ There are two states!

Systematics of Cu isotopes

Vingerhoets et al., PRC 82 (2010) 064311

Shape coexistence in the ⁷⁸Ni region: ⁷⁹Zn^m

Isomeric state with an exceptionally large root-mean-square radius and spin 1/2⁺

Collinear laser spectroscopy at ISOLDE

X. F. Yang et al. PRL 116, 182502 (2016)

Excitation energy from masses: $E_x = [m(isomer)-m(g.s.)]c^2$

Systematics of N=49 isotones

Shell evolution when moving further away from stability

X. F. Yang et al., PRL 116, 182502 (2016)

N=40 subshell closure

L. Canete, S. Giraud, A. Kankainen, B. Bastin et al., submitted

Measurements of ⁶⁷Fe and ^{69,70}Co at JYFLTRAP

- ➢ N=40 subshell closure below ⁶⁸Ni weak
- Previous measurements of ⁶⁸Co and ⁶⁹Co [*Izzo et al., PRC 97, 014309 (2018)*] most likely measured the isomer, not the ground state
 anomaly in the S_{2n} plot
- Ground and isomeric states determined for ⁶⁹Co at JYFLTRAP
 → location of the 1/2- intruder state at N=42

Nuclei close to ¹³²Sn

Neutron-rich silver isotopes

Measurement campaign at the IGISOL facility 2018 - 2019
→ Excitation energies and more <u>accurate</u> ground-state mass values (PI-ICR)
→ Spins of the states (laser spectroscopy)

¹²⁸In and ¹³⁰In studied with TOF-ICR and PI-ICR

Isospin symmetry

AL SEEFF

Isobaric Multiplet Mass Equation at A=52

Conclusions: Compatible with d=0 No big changes above A=40

D. A. Nesterenko, AK et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 065103

Isospin symmetry in the heavier mass region

- Precision measurements of T_Z=+1 nuclei: ⁸²Zr, ⁸⁴Nb, ⁸⁶Mo, and ⁸⁸Tc
- ⁸⁸Tc^m and ⁸⁹Ru (T_Z=+1/2) measured for the first time
- ⁸⁹Ru more bound than predicted in AME16
- MDE predictions for ⁸²Mo and ⁸⁶Ru also more bound and more precise than AME16 extrapolations

Summary and outlook

- Penning traps are versatile tools to study nuclear structure via nuclear binding energies
- PI-ICR method opens new possibilities to study low-lying isomeric states unreachable with other techniques
- MR-TOF to be installed before JYFLTRAP later this year
 → decay spectroscopy with purified beams (MONSTER)
 → mass measurements

Acknowledgements

IGISOL group in Jyväskylä and all experimental and theoretical collaborations related to the presented work!

This work has been supported by the Academy of Finland under grants No. 275389, 284516, 312544 and the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL). This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN). We thank for the bilateral mobility grant from the Institut Francais in Finland, the Embassy of France in Finland, the French Ministry of Higher Education and Research and the Finnish Society of Science and Letters. We are grateful for the mobility support from PICS MITICANS (Manipulation of Ions in Traps and Ion sourCes for Atomic and Nuclear Spectroscopy).