Nuclear structure studies via precision mass measurements

Anu Kankainen
Nuclear structure via mass measurements

- Evolution of shell gaps
- Onset of deformation
- Nucleon pairing energies
- IMME, isospin symmetry
- Single-particle energies
- Shape coexistence
- ISOMERS

IGISOL facility in the JYFL Accelerator Laboratory
JYFL Accelerator Laboratory

FOUR ACCELERATORS

K-130 CYCLOTRON

MCC-30/15 CYCLOTRON

1.7 MV PELLETRON

VARIAN eLINAC2100

University of Jyväskylä (JYU)
Jyväskylä, Finland

JYU. 2 FAST 4 JYU? #jyflacclab

JYFL Accelerator Laboratory
@jyflacclab
IGISOL facility at JYFL Accelerator Laboratory
IGISOL (Ion Guide Separator On-Line)

- a fast and universal method to produce radioactive beams

J. Ärje, J. Äystö et al., PRL 54 (1985) 99

PRODUCTION METHODS:
- Fusion-evaporation
- Heavy-ion fusion-evaporation
- Proton/deuteron-induced fission
- Multinucleon transfer (in progr.)

IGISOL-4:

JYFLTRAP – a cylindrical double Penning trap at IGISOL

(1) PURIFICATION TRAP - Selecting the ions

Mass-selective buffer gas cooling technique

Ion’s cyclotron resonance frequency:

\[\nu_c = \nu_+ + \nu_- = \frac{qB}{2\pi m} \]

B with a reference ion:

\[m = \frac{\nu_c^{\text{ref}}}{\nu_c} (m_{\text{ref}} - m_e) + m_e \]

(2) PRECISION TRAP - Mass measurements

Time-of-Flight Ion Cyclotron Resonance (TOF-ICR) technique

\[v_c = \nu_+ + \nu_- = \frac{qB}{2\pi m} \]

mass
Nuclides measured with JYFLTRAP

JYFLTRAP:
- Over 340 nuclides measured
 ~100 neutron-deficient
 ~220 neutron-rich
 ~20 stable
- More than 50 isomeric states
- Typical precisions: ~10 ppb
Neutron-rich rare-earth isotopes
Neutron-rich rare-earth isotopes

- 21 rare-earth isotopes measured
- 14 masses measured for the first time
- Mainly TOF-ICR, recently also PI-ICR
- Campaign I: M. Vilén et al., PRL 120, 262701 (2018)
- Campaign II: in preparation

Motivated by the rare-earth abundance peak in the astrophysical r process
Local maximum at $N=100$ - deformed shell closure?

^{164}Gd ($N=100$) more rigid than $^{160,162}\text{Gd}$

Change in structure at $N=98$?
Two-neutron separation energies S_{2n}

Onset of deformation

No change at N=100

No clear indication of a subshell closure at N=100 based on two-neutron separation energies

$^{163}\text{Gd g.s. measured}$

M. Vilén et al., PRL 120, 262701 (2018)
Neutron separation energies S_n

Less odd-even staggering (weaker pairing) than predicted by the models

Lower for $N = 96, 98, 100, 102$
Higher for $N = 97, 99, 101$
Neutron pairing

\[D_n(N) = (-1)^{N+1}[S_n(Z, N + 1) - S_n(Z, N)] = 2\Delta^3(N) \]

Empirical neutron pairing gap or odd-even staggering parameter

Experimental **neutron pairing weaker** than predicted by theoretical models when approaching the midshell!

M. Vilén et al., PRL 120, 262701 (2018)
Nuclei close to ^{78}Ni
Mass measurements close to N=40 and N=50

Measured several new isotopes close to N=40 and N=50 at JYFLTRAP

L.C. Canete, S. Giraud, A. Kankainen, B. Bastin et al., in preparation
Phase-Imaging Ion Cyclotron Resonance technique (PI-ICR): resolving low-lying isomers

JYFLTRAP: PI-ICR, t\textsubscript{acc} = 200 ms

JYFLTRAP: TOF-ICR, T\textsubscript{RF} = 1120 ms

JYFLTRAP: estimate for T\textsubscript{1/2}

There are two states!

76Cu

<table>
<thead>
<tr>
<th>NUBASE 2016</th>
<th>(J^\pi = (1,3))</th>
<th>(T\textsubscript{1/2} = 1.27(30)) s</th>
<th>(E^* = 0#(200#)) keV</th>
</tr>
</thead>
</table>

| Mass of 76Cu (638 ms state; ISOLTRAP): C. Guenaut et al., PRC 75, 044303 (2007); A. Welker et al., PRL 119, 192502 (2017). | | | |

JYFLTRAP: estimate for T\textsubscript{1/2}

- **Two half-lives (TRISTAN):** J. A. Winger et al, PRC 42, 954 (1990).
Systematics of Cu isotopes

Vingerhoets et al., PRC 82 (2010) 064311

<table>
<thead>
<tr>
<th></th>
<th>68 Cu<sub>39</sub></th>
<th>70 Cu<sub>41</sub></th>
<th>72 Cu<sub>43</sub></th>
<th>74 Cu<sub>45</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>6-826</td>
<td>6-722</td>
<td>3-564</td>
<td>(3-) 611</td>
<td>6-451</td>
</tr>
<tr>
<td>3-563</td>
<td>3+443</td>
<td>1+573</td>
<td>645 2-</td>
<td>2+662</td>
</tr>
<tr>
<td>6-92</td>
<td>6-290</td>
<td>1+297</td>
<td>1+438</td>
<td>2+538</td>
</tr>
<tr>
<td>2+90</td>
<td>2+162</td>
<td>3+101</td>
<td>2+264</td>
<td>(2) 452</td>
</tr>
<tr>
<td>2+ GS JUN45</td>
<td>2+ GS jj44b</td>
<td>3- GS JUN45</td>
<td>6-GS Expt.</td>
<td>1+62</td>
</tr>
</tbody>
</table>

76 Cu?
Shape coexistence in the ^{78}Ni region: $^{79}\text{Zn}^m$

Isomeric state with an exceptionally large root-mean-square radius and spin $1/2^+$

Collinear laser spectroscopy at ISOLDE

Excitation energy from masses:
$$E_x = [m(\text{isomer}) - m(\text{g.s.})]c^2$$

JYFLTRAP TOF-ICR measurements

X. F. Yang et al. PRL 116, 182502 (2016)
Systematics of N=49 isotones

Shell evolution when moving further away from stability

\[N = 49 \text{ Isotones} \]

- low-lying intruder states (2h-1p)

\[\begin{align*}
1/2^+ & \quad 1100(150) \\
1/2^- & \quad 896 \\
5/2^+ & \quad 711 \\
5/2^- & \quad 679 \\
5/2^+ & \quad 582 \\
1/2^+ & \quad 540 \\
1/2^- & \quad 228 \\
1/2^+ & \quad 1430 \\
5/2^+ & \quad 1140 \\
1/2^- & \quad 304 \\
1/2^- & \quad 388
\end{align*} \]

\[\begin{align*}
9/2^+ & \quad 0 \\
79^{30}_{49} \text{Zn} & \quad 81^{32}_{49} \text{Ge} \\
9/2^+ & \quad 0 \\
83^{34}_{49} \text{Se} & \quad 85^{36}_{49} \text{Kr} \\
9/2^+ & \quad 0 \\
87^{38}_{49} \text{Sr} & \quad 0
\end{align*} \]

X. F. Yang et al., PRL 116, 182502 (2016)
N=40 subshell closure

- Measurements of 67Fe and 69,70Co at JYFLTRAP
- N=40 subshell closure below 68Ni weak
- Previous measurements of 68Co and 69Co [Izzo et al., PRC 97, 014309 (2018)] most likely measured the isomer, not the ground state → anomaly in the S_{2n} plot
- Ground and isomeric states determined for 69Co at JYFLTRAP → location of the 1/2- intruder state at N=42

L. Canete, S. Giraud, A. Kankainen, B. Bastin et al., submitted
Nuclei close to 132Sn
Neutron-rich silver isotopes

ENSDF

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (keV)</th>
<th>Half-life (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6⁻)</td>
<td>129.8</td>
<td>9.3</td>
</tr>
<tr>
<td>(3⁺)</td>
<td>47.9</td>
<td>20</td>
</tr>
<tr>
<td>(0⁻)</td>
<td>0</td>
<td>230</td>
</tr>
</tbody>
</table>

116Ag

- $Z=40$ subshell closure
- Comparison to shell model predictions

Measurement campaign at the IGISOL facility 2018 - 2019

→ Excitation energies and more accurate ground-state mass values (PI-ICR)
→ Spins of the states (laser spectroscopy)
\(^{128}\text{In} \) and \(^{130}\text{In} \) studied with TOF-ICR and PI-ICR

Close to \(^{132}\text{Sn}\)

\[
^{130}\text{In}: (\pi 0 g_{9/2})^{-1} (\nu 0 h_{11/2})^{-1} \\
^{128}\text{In}: (\pi 0 g_{9/2})^{-1} (\nu 0 h_{11/2})^{-3}
\]

All three states in \(^{130}\text{In}\) resolved and measured with PI-ICR
Isospin symmetry
Isobaric Multiplet Mass Equation at A=52

Charge-independence

\[T_z = \pm \frac{1}{2} \]

JYFLTRAP:
52Co (g.s.+m)
52Fe, 52Mn

\[d = 6.0(32) \text{ keV} \]

Conclusions: Compatible with \(d=0 \)
No big changes above \(A=40 \)

Isospin symmetry in the heavier mass region

- Precision measurements of $T_Z=+1$ nuclei: 82Zr, 84Nb, 86Mo, and 88Tc
- 88Tcm and 89Ru ($T_Z=+1/2$) measured for the first time
- 89Ru more bound than predicted in AME16
- MDE predictions for 82Mo and 86Ru also more bound and more precise than AME16 extrapolations

M. Vilen et al., to be submitted
Summary and outlook

- Penning traps are versatile tools to study nuclear structure via nuclear binding energies
- PI-ICR method opens new possibilities to study low-lying isomeric states unreachable with other techniques
- MR-TOF to be installed before JYFLTRAP later this year → decay spectroscopy with purified beams (MONSTER) → mass measurements
Acknowledgements

IGISOL group in Jyväskylä and all experimental and theoretical collaborations related to the presented work!

This work has been supported by the Academy of Finland under grants No. 275389, 284516, 312544 and the Finnish Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Research at JYFL). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 771036 (ERC CoG MAIDEN). We thank for the bilateral mobility grant from the Institut Français in Finland, the Embassy of France in Finland, the French Ministry of Higher Education and Research and the Finnish Society of Science and Letters. We are grateful for the mobility support from PICS MITICANS (Manipulation of Ions in Traps and Ion sourCes for Atomic and Nuclear Spectroscopy).