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Overview
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Theoretical calculations around Z = 50 :
CC and IM-SRG - [T. D. Morris et al., Phys. Rev. Lett., vol. 120, no. 15, p. 152503, Apr. 2018.]
LSSM - [T. Togashi, Y. Tsunoda, T. Otsuka, N. Shimizu, and M. Honma, Phys. Rev. Lett., vol. 121, no. 6, p. 062501, Aug. 2018.]

Proposals:
111-131In (Z=49):  CERN-INTC-2017-025 (2017)
100-111In (Z=49):  CERN-INTC-2017-055 (2017)
103-121Sn (Z=50): .CERN-INTC-2016-037 (2016) 

Robustness of N=Z=50, N=82 shell closures
Shell evolution towards N=Z=50, N=82
Ordering of shell-model orbit configurations
Proton-neutron correlations



Indium (Z = 49) overview

• Adjacent to Z = 50 shell 
closure

• Odd-Even In
• πg9/2 proton hole
• Or πp1/2 proton hole isomer

• Odd-Odd In
• ν1g7/2 →ν3s1/2 couple with the 

proton holes

• Many high-spin isomers

• Evolution of nuclear structure 
properties N=50 to N=82 with 
proton (hole)-neutron 
interaction
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Hyperfine structure
 Atomic energy levels are split by the 

interaction nuclear magnetic dipole 
moment μ or by nuclear electric 
quadrupole moment Q interacting 
with the electron fields

 the nuclear spin I and electronic spin 
J to couple to create F energy levels

 Isotope shifts give changes in mean 
square charge radii δ<r2>
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Laser Spectroscopy using CRIS
 Combines the high-resolution of a collinear fast beam atom-laser geometry with 

the high-detection efficiency of ions after resonance ionization
 Also benefits from collecting the re-ionized species for decay spectroscopy
 Uses an ion cooler buncher (ISCOOL) to reduce energy spread and increase 

atom-laser overlap efficiency
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The laser ionization schemes

Measured using two transitions:

246.8 nm
 P3/2 → S1/2 sensitive to I, μ, Q

246.0 nm
 P1/2 → S1/2 unaffected by Q
 Large A splitting, acts as a 

constraint for μ and aids in 
resolving structure
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Motivation
 Remarkably constant μ value 105 ≤ A ≤ 127 for the I=9/2+ state of the proton hole
 Single particle calculations for the odd-particle appear to reproduce the trend well (hole 

plus vibrating core shell model)
 Contribution from collective excitations of even-even Sn core considered to be very small
 The evolution of this “single-particle” trend towards N=82 will then give insight into its 

origin and the role collectivity is playing, if any

10
[Fig. 4.11 - Heyde, K. L. G. The nuclear shell model. (Springer-Verlag, 1994)]



Motivation

 
 The πp1/2 orbital is insensitive 

to first-order configuration 
mixing/core polarisation

 Deviation due to MECs or 
higher-order mixing?
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“

                       

1st order config. mixing - [Arima, A. & Horie, H Prog. Theor. Phys. 12, 623–641 (1954)]

’’

                       

→ 0

-[Eberz, J. et al. Nucl. Phys. A 464, 9–28 (1987)]



New results (113-131In)

• x26 new isomer shifts (δ<r2>g,m),
• x16 new  μs,
• x14 new Qs,
• x4 new isotope shifts (δ<r2>A, A’)
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113-131In → 



New results (113-131In)
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127In with 246.8 nm

127In with 246.0 nm
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 Previously the constant μ value was reproduced by hole + vibrating core model with 

geff=0.7gfree
 More recent phonon-coupling excitation models also do not predict the abrupt 

change

[E. E. Saperstein, et al. EPL, vol. 11, p. 42001 2013]
[Heyde, Phys. Rev. C 17, 1219–1243 1978]
[A.R. Vernon et al. - in preparation 2019]



 

• Unexpected crossing of the I =1/2- magnetic dipole moments across the Schmidt 
value is reversed and is significantly reduces at the shell closure

[Eberz, J. et al. Nucl. Phys. A 464, 9–28 (1987)]



Benchmarking atomic factor calculations

• High accuracy calculations of the atomic parameters in indium is of interest to the atomic physics 
community for searches for eEDM searches

• Relativistic coupled-cluster calculations of the three-electron system of atomic indium were 
benchmarked with newly measured hyperfine magnetic dipole constants, A (8s, 9s) → gives an 
evaluation in the accuracy of the calculations

• Led to improved accuracy of the calculations used to evaluation the electric field gradients, needed 
for extraction of the nuclear quadrupole moments
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[R. F. Garcia Ruiz, A.R. Vernon et al., “High-Precision Multiphoton Ionization of Accelerated Laser-Ablated 
Species,” Phys. Rev. X, vol. 8, no. 4, p. 041005, Oct. 2018.]
[B. K. Sahoo, R. Pandey, and B. P. Das, “Search for a permanent electric-dipole moment using atomic 
indium,” Phys. Rev. A, vol. 030502, no. 84, pp. 5–8, 2011.]



 

[E. E. Saperstein, et al. EPL, vol. 11, p. 42001, 2013.]
[Heyde, Phys. Rev. C 17, 1219–1243 (1978)]



Extracting nuclear charge radii: isotope Shift 
factors for odd-Z isotopes

• Isotope shift factors in odd-Z nuclei rely on calculation, as the absolute charge radii of only few stable isotopes are available

• Isotope shift and high-precision isomer shift values allowed for isolation of field shift and specific mass shift contributions to 
the transitions used to measure indium

• Benchmarking on an ‘analytic response’ relativistic coupled-cluster method able to accurately calculate specific mass shift 

factors 
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[B. K. Sahoo, A. R. Vernon et al.,  submitted PRL 2019.]
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Odd-even staggering of nuclear charge radii
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 Early disappearance of charge radii odd-even stagger previously seen in 
 neighbouring Sn (Z = 50) but not Cd (Z = 48) isotopes
 Predicted to be at N=82 for Cd, but not yet measured

[M. Hammen et al., Phys. Rev. Lett., vol. 121, no. 10, p. 102501, 2018.]
[F. L. Le Blanc et al. Phys. Rev. C - Nucl. Phys., vol. 72, no. 3, pp. 1–7, 2005.]



Odd-even staggering of nuclear charge radii
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 Early disappearance of OES observed for the indium ground states
 Observed to a lesser extent for the accompanying isomer chain

[M. Hammen et al., Phys. Rev. Lett., vol. 121, no. 10, p. 102501, 2018.]
[F. L. Le Blanc et al. Phys. Rev. C - Nucl. Phys., vol. 72, no. 3, pp. 1–7, 2005.]



Odd-even staggering of nuclear charge radii
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 Early disappearance of OES observed for the indium ground states
 Observed to a lesser extent for the accompanying isomer chain

[M. Hammen et al., Phys. Rev. Lett., vol. 121, no. 10, p. 102501, 2018.]
[F. L. Le Blanc et al. Phys. Rev. C - Nucl. Phys., vol. 72, no. 3, pp. 1–7, 2005.]



Conclusions: Odd-mass neutron-rich indium 
isotopes

• Constant value of the I = 9/2 magnetic dipole moments shows first change in over 24 
isotopes

• What is the origin of the stability over the mid-shell and the abrupt onset?

• Trend of the I=1/2 magnetic dipole moment changes and passes the Schmidt value
• Origin of the deviation in the I = 1/2 magnetic dipole moments still needs to be pinned down

• Calculation of challenging atomic factors has allowed the first nuclear data 
independent evaluation of the changes in the nuclear charge radii of indium

• Changes in OES 
• Pairing appears to be playing an important role

• Other nuclear observables not discussed:
• Magnetic dipole moments, quadrupole moments of odd-odd indium isotopes and high spin 

isomers
• Isomer charge radii

• Ab initio IM-SRG calculations for the electromagnetic moments and charge radii are 
underway for these isotopes
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Neutron-deficient indium isotopes

• Aim of the experiment:
• Extend In measurements to N=50 

(99In)

• What we measured :
• Hyperfine structures of 115-101In 

(N=52)
• Again using the 246.0 nm and 

246.8 nm transitions
• New measurements of nuclear 

ground states and entirely new 
isotope measurements <105In

• Unexpected isomer transitions at 
102,101In
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Talk by C. Ricketts following this one!



Neutron-rich potassium isotopes

•  
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Hyperfine structure of 52K obtained by detecting the beta decay of 
resonantly ionized 52K isotopes

PRELIMINARY
PRELIMINARY

Analysis underway by A. Koszorus

52K



Neutron-deficient tin isotopes

• Aim of the experiment:
• Measurements towards N=50 shell 

closure
• Ordering of neutron configurations 

νd5/2 -νg7/2 101-107Sn
• Confirmation of simple trends in g-

factors and electric quadrupole 
moments

• What we measured :
• Hyperfine structures of 120-104Sn

25

Analysis underway by F. P. Gustavson



RaF molecular spectroscopy

Fluoride molecules offer high sensitivity for fundamental symmetry studies- 
enhanced in heavy octupole deformed nuclei

Aim of the experiment:
• Exploratory study for feasibility of collinear molecular measurements
• Measure the excitation energy of RaF from the vibrational ground states 

(1000 cm-1 uncertainty on theoretical prediction of energies)
• → more benchmarking of atomic theory!
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226RaF

~1000 cm-1  (30 THz) → only 4 hours!

~106 /s

[T. A. Isaev, S. Hoekstra, and R. Berger, “Laser-cooled RaF as a promising candidate to measure 
molecular parity violation,” Phys. Rev. A, vol. 82, no. 5, p. 52521, Nov. 2010]



RaF molecular spectroscopy

226RaF
~1000 cm-1  (30 THz) → only 4 hours!
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[Garcia Ruiz et al. In preparation (2019)]
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RaF molecular spectroscopy
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226Ra(I=0)F

226Ra(I=0)F

223Ra(I=3/2)F

300 MHz

Molecular Hyperfine structure

~ 15 GHz[Garcia Ruiz et al. In preparation (2019)]



RaF molecular spectroscopy

?

?
?

? ??

?

?

?

? ?

IP= 39990(50) cm-1

 The first laser spectroscopy of synthetic radioactive molecules!
 Vibrational transitions of 226RaF and 228RaF, 226RaF, 223RaF, 225RaF
 Ionization potential of RaF
 Transitions to higher molecular excited states
 High-resolution measurements of vibrational structure, including 223Ra (I = 3/2)
 → A suitable laser cooling scheme for RaF molecules has been established!

  
[Garcia Ruiz et al. In preparation (2019)]
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Thanks, collaboration!
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And to these funding bodies and 
organisations for allowing the 
research:

[Thanks to Kara Lynch for the CRIS PowerPoint template]

J. Billowes, C. Binnersley, T.E. Cocolios, B. Cooper, K.T. Flanagan, S. 
Franchoo, V. Fedosseev,   B.A. Marsh, M. Bissell,  R.P. De Groote, R.F. 
Garcia Ruiz, A. Koszorus, G. Neyens,  H. Perrett, F. Parnefjord 
Gustafsson, C. Ricketts, H.H. Stroke, A. Vernon, K. Wendt, S. Wilkins, 
X. Yang

The CRIS collaboration:



Thanks for listening!
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