IV International Conference on Nuclear Structure and Dynamics (NSD2019) May 13-17, 2019, Centro Culturale Don Orione Artigianelli, Venice, Italy

Time-Dependent Hartree-Fock Theory for Multinucleon Transfer Reactions: Very recent results

Kazuyuki Sekizawa

Center for Interdisciplinary Research Institute for Research Promotion, Niigata University, Japan

Today's topics

MNT

Towards *N***=126**

QF & SHE

Towards Z=120

Today's topics

MNT

Towards *N***=126**

QF & SHE

Towards Z=120

How can we create yet-unknown neutron-rich nuclei?

M. Thoennessen, Rep. Prog. Phys. 76, 056301 (2013)

Multinucleon transfer reaction is expected to be a promising tool

Production cross section for N=126 isotones in ${}^{136}Xe + {}^{208}Pb$

Langevin: V.I. Zagrebaev and W. Greiner, PRC**83**(2011)044618 Fragmentation: T. Kurtukian-Nieto et al., PRC**89**(2014)024616 Multinucleon transfer reaction is expected to be a promising tool

Production cross section for N=126 isotones in ${}^{136}Xe + {}^{198}Pt$

Fragmentation: T. Kurtukian-Nieto et al., PRC89(2014)024616

Various models have been extensively developed and applied:

□ Langevin approach

V. Zagrebaev and W. Greiner, J. Phys. G **31**(2005)825; **34**(2007)1, 2265 A.V. Karpov and V.V. Saiko, PRC**96**(2017)024618; PRC**99**(2019)014613

□ Improved quantum molecular dynamics model (ImQMD)

K. Zhao et al., PRC**92**(2015)024613; PRC**94**(2016)024601 C. Li et al., PRC**93**(2016)014618

Dinuclear system model (DNS)

M.H. Mun et al., PRC**89**(2014)034622; PRC**91**(2015)054610; L. Zhu et al., J. Phys. G **42**(2015)085102; PLB**767**(2017)437; PRC**96**(2017)024606

GRAZING

A. Winther, NPA**572**(1994)191; NPA**594**(1995)203 R. Yanez and W. Loveland, PRC**91**(2015)044608 (GRAZING-F) P.W. Wen et al., PRC**99**(2019)034606 (GRAZING w/ GEMINI++)

You may also see my mini-review article: KS, Front Phys. 7, 20 (2019)

 \checkmark There is no adjustable parameter on reaction dynamics

TDHF Theory for Multinucleon Transfer Reactions

We have developed: **TDHF** + **PNP** + **GEMINI**

TDHF

GEMINI++

De-excitation (10⁻¹⁸-10⁻¹⁶ sec)

Reaction dynamics (10⁻²¹-10⁻²⁰ sec)

We have developed: **TDHF** + **PNP** + **GEMINI**

✓ Particle number projection (PNP) $|\Phi_{N,Z}(b)\rangle = \hat{P}_N \hat{P}_Z |\Phi(b)\rangle = \hat{P}_N \hat{P}_Z$ $\hat{P}_N \hat{P}_Z$ $\hat{P}_N \hat{P}_Z$ $\hat{P}_N \hat{P}_Z$

C. Simenel, PRL**105**(2010)192701 **PNP operator:** $\hat{P}_n = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-\hat{N}_V)\theta} d\theta$

- ➤ Transfer probabilities and cross sections $P_{N,Z}(b) = \langle \Phi_{N,Z}(b) | \Phi_{N,Z}(b) \rangle = P_N(b) P_Z(b)$
- Expectation values

$$\mathcal{O}_{N,Z}(b) = \frac{\left\langle \Phi_{N,Z}(b) \middle| \hat{\mathcal{O}}_V \middle| \Phi_{N,Z}(b) \right\rangle}{\left\langle \Phi_{N,Z}(b) \middle| \Phi_{N,Z}(b) \right\rangle}$$

Secondary deexcitation processes

Evaporation/Fission/Gamma by GEMINI++ [R.J. Charity, PRC82(2010)014610]

KS and K. Yabana, PRC88(2013)014614

$$\left[\sigma_{N,Z} = 2\pi \int b \, P_{N,Z}(b) db\right]$$

KS and K. Yabana, PRC90(2014)064614

$$\left(J_{N,Z}(b), \ E^*_{N,Z}(b)\right)$$

Inputs for a statistical model

KS, PRC96(2017)014615

How to compute production cross sec

We have developed

✓ Particle number projection (PNP)

$$\left|\Phi_{N,Z}(b)\right\rangle = \hat{P}_N \hat{P}_Z \left|\Phi(b)\right\rangle = \hat{P}_N \hat{P}_Z$$

A.S. Umar, C. Simenel, and W. Ye, PRC**96**(2017)024625 X. Jiang and N. Wang, Chin. Phys. C **42**(2018)104105 Z. Wu and Lu Guo, private communication.

✓ Other groups also adopted GEMINI for TDHF:

PNP operator:

$$\hat{P}_n = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-\hat{N}_V)\theta} d\theta$$

➤ Transfer probabilities and cross sections $P_{N,Z}(b) = \langle \Phi_{N,Z}(b) | \Phi_{N,Z}(b) \rangle = P_N(b) P_Z(b)$

Expectation values

$$\bar{E}_{N,Z}^* = \frac{N+Z}{A_{\rm CN}} \bar{E}_{\rm tot}^* \quad \bar{E}_{\rm tot}^* = E_{\rm c.m.} - \text{TKE} + Q_{\rm gg}$$

Secondary deexcitation processes

Evaporation/Fission/Gamma by GEMINI++ [R.J. Charity, PRC82(2010)014610]

KS and K. Yabana, PRC88(2013)014614

$$\sigma_{N,Z} = 2\pi \int b \, P_{N,Z}(b) db$$

KS and K. Yabana, PRC90(2014)064614

$$\left(\bar{J}(b), \bar{E}^*_{N,Z}(b) \right)$$

Inputs for a statistical model

KS, PRC96(2017)014615

Recent experimental data:

✓ ¹³⁶Xe+¹⁹⁸Pt, $E_{c.m.}$ = 645 MeV $E_{c.m.}$ = 450 MeV ✓ ¹³⁶Xe+²⁰⁸Pb, $E_{c.m.}$ = 423, 526, 617 MeV $E_{c.m.}$ = 450 MeV

✓ 204 Hg+ 198 Pt, $E_{c.m.}$ = 619 MeV

Y.X. Watanabe et al., PRL115(2015)172503 @GANIL

V.V. Desai et al., PRC99(2019)044604 @ Argonne

E.M. Kozulin et al., PRC86(2012)044611 @Flerov Lab

J.S. Barrett et al., PRC91(2015)064615 @Argonne

T. Welsh et al., PLB771(2017)119 @Argonne

> TDHF calculations were carried out for:

¹³⁶Xe+¹⁹⁸Pt: $E_{c.m.}$ = 450, 564, 645, 726, 806 MeV ¹⁴⁴Xe+¹⁹⁸Pt: $E_{c.m.}$ = 564, 645, 726, 806 MeV ¹³²Sn+²⁰⁸Pb: $E_{c.m.}$ = 565, 646, 727, 808 MeV ¹³⁶Xe+²⁰⁸Pb: $E_{c.m.}$ = 450, 617, 740, 822 MeV ²⁰⁴Hg+¹⁹⁸Pt: $E_{c.m.}$ = 619, 703, 804, 904, 1005 MeV

Comparison with the experimental data (1):

the ¹³⁶Xe+¹⁹⁸Pt reaction

Comparison with the experimental data (2):

the ¹³⁶Xe+²⁰⁸Pb reaction

Finally, let's see the most important plots:

Production cross sections for N=126 isotones

Isotonic distributions for various systems

Isotonic distributions for various systems

QF & SHE

Towards Z=120

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

Quasifission process

A fast (~10⁻²¹-10⁻²⁰ sec) fission process before compound nucleus formation (fusion)

Quasifission dynamics in TDHF have been investigated in last 5 years

A. Wakhle, C. Simenel, D.J. Hinde et al., PRL**113**(2014)182502

Contact time, E^* , TKE: ${}^{40,48}Ca + {}^{238}U$

V.E. Oberacker, A.S. Umar, and C. Simenel, PRC**90**(2014)054605

 ${}^{64}\text{Ni}+{}^{238}\text{U}$ at $E_{\text{lab}}=390 \text{ MeV}$

KS and K. Yabana, PRC93(2016)054616

Quasifission dynamics in TDHF

Tip collision

Shell effects of ²⁰⁸Pb

Side collision

More mass-symmetric

K. Sekizawa

TDHF Theory for Multinucleon Transfer Reactions

Tue., May. 14, 2019

 64 Ni+ 238 U at E_{lab} =390 MeV

TDHF provides quantitative description of quasifission dynamics

TKE-A distribution: Comparison with experimental data

Expt.: E.M. Kozulin et al., PLB686(2010)227

Recently, TDHF calculations were carried out for: (head-on, tip & side collisions, $E/V_{\rm B}$ =0.95-1.2)

However, TDHF cannot be used to compute the CN formation probability (because it's a very rare process)

To study fusion reactions for SHE synthesis, we have developed a "TDHF+Langevin" approach

KS and K. Hagino, Phys. Rev. C **99**, 051602(R) (2019) Rapid Comm. with Editors' Suggestion

TDHF + Langevin approach: Idea

W.J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński,
Acta Phys. Pol. B 34(2003)2049; PRC71(2005)014602
K. Hagino, PRC98(2018)014607

Fusion dynamics leading to Z=120: TDHF results

KS and K. Hagino, Phys. Rev. C 99, 051602(R) (2019)

Magicity of ⁴⁸Ca does not affect much the entrance-channel dynamics

Dissipated energy was evaluated by DD-TDHF: K. Washiyama et al., PRC78(2008)024610; 79(2009)024609

K. Sekizawa

TDHF Theory for Multinucleon Transfer Reactions

Magicity of ⁴⁸Ca affects the survival probability via the lower excitation energy

Summary and perspective

MNT

OF

SHE

Experimental and theoretical results have been accumulated.

Detailed analysis will reveal what is enough (or not) in TDHF to describe multinucleon transfer reactions

> It would be the time to go beyond the TDHF description

Systematic TDHF calculations have been performed.

It will provide us various information, e.g., contact time, fragment mass and charge, and equilibration time scale, etc.

TDHF+Langevin approach has been developed for SHEs.

We plan to combine a more realistic Langevin model to predict fusion reactions for Z=119, 120, and beyond.

Kazuyuki Sekizawa Specially Appointed Assistant Professor Center for Transdisciplinary Research Institute for Research Promotion, Niigata University 8050, Ikarashi Ninoho, Nishi-ku, Niigata City, Niigata 950-2181, Japan sekizawa @ phys.sc.niigata-u.ac.jp http://sekizawa.fizyka.pw.edu.pl/english/