Experimental studies of neutron-rich nuclei around $N = 126$ at KEK isotope separation system

Y.X. Watanabe
KEK Wako Nuclear Science Center (WNSC)

Contents
1. Introduction: astrophysical motivation
2. Nuclear production around $N = 126$ by MNT reactions
3. KISS facility and recent experimental results
4. R&D and future plan of KISS
5. Summary
r-process nucleosynthesis and $N = 126$ neutron-rich nuclei

Nuclear properties of neutron closed shell $N = 126$ nuclei
→ r-process in astrophysical nucleosynthesis

Lifetime and mass of waiting point nuclei
→ Astrophysical environments of r-process

Uncertainties of r-process abundance pattern: half-life

Theoretical nuclear models play crucial roles in the simulation of the r-process nucleosynthesis.

Half-lives of $N = 126$ isotones

Isotopic abundance pattern variance from uncertain β-decay half-lives $(0.1 \sim 10 \times T_{1/2})$

Systematic nuclear spectroscopy (lifetime, mass, β-γ spectroscopy, laser spectroscopy) around $N = 126$ → Astrophysical environments of r-process

Nuclear production around $N = 126$ by MNT reaction

Macroscopic approach
(Langevin-type dynamical equation of motion)

$^{136}\text{Xe} + ^{208}\text{Pb} (E_{\text{cm}} = 450 \text{ MeV})$

Cross section [mb]

![Graph showing cross section vs. neutron and proton numbers for $^{136}\text{Xe} + ^{208}\text{Pb}$ reaction.]

Semi-classical approach
(Single-particle transfer probability)

$^{136}\text{Xe} + ^{198}\text{Pt} (E_{\text{cm}} = 645 \text{ MeV})$

![Graph showing cross section vs. neutron and proton numbers for $^{136}\text{Xe} + ^{198}\text{Pt}$ reaction.]

GRAZING calculation

Experimental study for MNT reactions of 136Xe + 198Pt

136Xe (8 MeV/nucleon) + 198Pt (1.3 mg/cm2)

Projectile-like fragments (PLFs) were detected by large acceptance magnetic spectrometer VAMOS++ at GANIL, and target-like fragment (TLF) distributions were deduced.

Isotopic distributions of target-like fragments (TLFs)

- Measurements
- GRAZING calculations

Lighter distribution N/Z equilibration & evaporation

n-pickup ($-xn$)

Larger cross section

$N \sim 126$

Modest enhancement of cross sections a factor of 2 ~ one order of magnitude
TKEL dependence of isotopic distribution

TKEL: Total Kinetic Energy Loss

- Total
- TKEL = -25 ~ 25 MeV
- TKEL = 25 ~ 75 MeV
- TKEL = 75 ~ 125 MeV
- TKEL = 125 ~ 175 MeV

GRAZING calculations

KEK Isotope Separation System (KISS)

- Construction at RIKEN since 2011
- Online test since 2013
- Open for users since 2016

Detection system
- Tape transport system
- β-ray detector
- Clover HpGe detectors for γ-rays

Doughnut-shaped Gas cell

Extraction chamber
- HV (~ 20 kV)

Gas cell system
- Target (enriched 198Pt, 92%)
- MNT reaction
- Gas cell (Ar gas, neutralization)
- Laser resonance ionization (Element selection)

KISS experimental setup

- Four HPGe (High-Purity Germanium) clover detectors
- Collaboration with IBS (Korea)
- KISS beam
- β BG
- $\varepsilon_{\beta} = 40\%$ for $Q_{\beta} = 1$ MeV
- B.G. rate $= 0.1$ cps

MSPGC (Multi-Segmented Proportional Gas Counter)

- 2-layered 16-segmented proportional gas counter
- Beam 136Xe (10.75 MeV/nucleon)
- Beam 198Pt (12.5 mg/cm2) Ti (3 μm × 3)

Collaboration with IBS (Korea)
Experimental results

- β-γ spectroscopy at KISS
- Laser spectroscopy at KISS

Element

- Au
- Pt
- Ir
- Os
- Re
- W
- Ta
- Hf
- Lu
- Yb

Charge radius known
Lifetime known

Stable
 Known

Neutron number

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
$\beta-\gamma$ spectroscopy of ^{198}Os

$T_{1/2} = 125(28)$ s New!

^{198}Os

$Q_\beta = 4.09$ MeV

$I_\beta \leq 20(5)\%$

$logf_t \geq 5.69(16)$

^{198}Ir

$t_{1/2} = 8(1)$ s

$Q_\beta = 1.98$ MeV

$I_\beta = 9(3)\%$

$logf_t = 5.88(15)$

^{198}Pt stable

New! 230.6 keV

Count / 0.5 keV

Energy (keV)

Count / 9.25 s

Time (s)

New! 230.6 keV

230.6 keV
Systematics of osmium isotopes

Single-particle levels of $^{200}_{74}$W

Half-lives of osmium isotopes

Laser spectroscopy of nuclei around $N = 126$

Laser spectroscopy \rightarrow Hyperfine structure
- $\mu, Q \rightarrow$ Wave-function
- Isotope shift \rightarrow Charge radius \rightarrow Nuclear deformation

In-gas-cell laser ionization spectroscopy at KISS for study of nuclear structure

HFS measurement for ground and isomeric states of 199Pt

199mPt ($I^\pi=13/2^+$)

199gPt ($I^\pi=5/2^-$)

199Pt

199Au

199mPt ($I^\pi=13/2^+$)
HFS measurement for ground and isomeric states of 199Pt

| Nuclide | I^π | μ (μ_N) | $\delta(r^2)^{194.4A}$ (fm2) | $|\langle \beta_2^2 \rangle |^{1/2}$ |
|---------|---------|-----------------|-------------------------------|-------------------------------|
| 199mPt | $(13/2)^+$ | $-0.57(5)$ | $0.166(30)$ | $0.110(12)$ |
| 199gPt | $5/2^-$ | $+0.75(8)$ | $0.268(34)$ | $0.144(10)$ |
High-precision In-gas-jet laser spectroscopy

More precise study of wave-function and deformation
← High-precision laser spectroscopy
Narrow-band LD laser + Dye amplifier + Intense YAG laser

In-gas-jet laser spectroscopy
$^{194}\text{Pt} (\pi^+ = 0^+)$
Width: 0.60(1) GHz (FWHM)

In-gas-cell laser spectroscopy
$^{198}\text{Pt} (\pi^+ = 0^+)$
Width: 12.5 GHz (FWHM)

Ar gas cell: 80 kPa, $P_{\text{B.G.}} \sim 50$ Pa
To go further to lifetime measurements of more neutron-rich nuclei, lower background rate of the gas counter is necessary (~0.01 cps)

Proportional gas counter: Ar + CH$_4$(10%), 0.1 MPa

2D tracking: $\Delta\Omega = 80\%$, background rate 0.1 cps
2-layered 16-segmented proportional gas counters

Anode wire: Carbon wire (φ 10 mm, 3 kΩ/cm)
→ Longitudinal hit-positions of β-rays can be identified.
→ Better separation from the B.G.
Mass measurements at KISS

Mass measurements

Multi-Reflection Time-of-Flight Mass Spectrograph (MRTOF-MS)

β-γ spectroscopy

Multi-trap ion buncher

window-less entrance

He gas cell ion cooler

RF ion guide

RF-Carpet

DC-field

KISS beam

Collaboration with IBS (Korea)

He gas cell ion cooler

MRTOF-MS

KISSL Beam

Multi-trap ion buncher

IBS colleague

Summary

- Systematic nuclear spectroscopy (lifetime, mass, β-γ spectroscopy, laser spectroscopy) around neutron magic number 126 are important for identification of astrophysical environments of r-process.

- MNT reactions are promising for production of neutron-rich nuclei around $N = 126$.

- KEK Isotope Separation System (KISS)
 - MNT reactions of 136Xe + 198Pt
 - Gas cell + Laser ionization + ISOL
 - Efficient collection and separation of MNT reaction products
 - Lifetime measurements & β-γ spectroscopy
 - $^{199-201}$Pt, $^{196-200}$Ir, $^{195-198}$Os (136Xe + 198Pt), $^{185-187}$Ta (136Xe + nat. W)
 - Laser spectroscopy
 - 199Pt, $^{196-198}$Ir
 - High-precision in-gas-jet laser spectroscopy was prepared
 - 3D tracking gas counter is under development
 - Mass measurements with MRTOF-MS is planned

KISS is open for external user programs
Pre-proposals will be discussed in the SSRI-PNS collaboration meeting (September)

SSRI-PNS_contact@kek.jp

THANK YOU FOR YOUR ATTENTION
Collaboration

KISS project

KEK Y. Hirayama, Y. Kakiguchi, H. Miyatake, M. Oyaizu, P.H. Schury, M. Wada, Y.X. Watanabe
IBS S.C. Jeong, J.Y. Moon, J.H. Park
Seoul National University H.S. Choi
Tsukuba University M. Mukai, M. Ahmed
CNS N. Imai
RIKEN H. Ishiyama, S. Kimura, T. Sonoda

MNT measurements at GANIL

KEK Y. Hirayama, H.S. Jung, H. Miyatake, Y.X. Watanabe
IBS H. Ishiyama, S.C. Jeong
CNS N. Imai
GANIL Y.H. Kim, M. Rejmund, C. Schmitt, A. Navin, G. de France, E. Clement
Torino University G. Pollarolo
LNL L. Corradi, E. Fioretto
Padova University D. Montanari
Seoul National University S.H. Choi, J.S. Song
University of Tokyo M. Niikura
RIKEN D. Suzuki
Osaka University H. Nishibata, J. Takatsu