

Towards high-resolution in-beam γ -ray spectroscopy at the RIBF

Kathrin Wimmer ウィマー カトリン

The University of Tokyo

14 May 2019

1 In-beam γ -ray spectroscopy at the RIBF

2 Selected recent results

- 3 High-resolution spectroscopy
- 4 Summary

Kathrin Wimmer

Many interesting features

The Radioactive Isotope Beam Factory

Kathrin Wimmer

18GHzECRIS

e-F

Kathrin Wimmer

- fragmentation or fission of intense primary beam
- particle identification by $B\rho \Delta E TOF$
- secondary reaction target at F8
- identification after target:
 ZeroDegree or SAMURAI spectrometer

DALI2

- 186 Nal(TI) detectors (upgrade to 226)
- intrinsic resolution 7 % at 1 MeV
- in-beam resolution ~ 10 % at 150 AMeV
- efficiency ~ 20 % at 1 MeV (before add-back)
- beam tracking by PPACs

S. Takeuchi et al., Nucl. Instr. Meth. A 763 (2014) 596.

Kathrin Wimmer

In-beam γ -ray spectroscopy at the RIBF

Selected recent results

SEASTAR

Shell Evolution And Search for Two-plus energies At the RIBF

- first spectroscopy of neutron-rich nuclei
- many by-products and even-odd channels
- 27 days of beam time in 3 campaigns
- spokesperson: P. Doornenbal and A. Obertelli

combining

- highest intensity secondary beams
- large acceptance spectrometer
- thick liquid hydrogen target MINOS
- DALI2 γ-ray detector
- few spectrometer settings

79Cu

MINOS

- maximize luminosity
- thick liquid hydrogen target (\sim 1 g/cm², \sim 10 cm)

DALI2 γ-ray spectrometer

Recoil proton
Drift electron

To ZeroDegree

78Ni

MINOS

From BigRIPS

- * Vertex tracking system
- * 10-cm thick liquid hydrogen target
- event-by-event Doppler-correction needs β and θ
 - ightarrow interaction vertex reconstruction
- target surrounded by time-projection-chamber
- vertex resolution 5 mm

A. Obertelli et al., Eur. Phys. Jour. A 50 (2014) 8, C. Santamaria et al., Nucl. Instr. Meth. B 905 (2018) 138.

- ⁷⁸Ni is the only neutron-rich doubly-magic nucleus with unknown *E*(2⁺)
- within the predicted neutron drip-line
 J. Erler et al., Nature 486 (2012) 509.
- magicity inferred from β-decay measurements

P. T. Hosmer et al., Phys. Rev. Lett. 94 (2005) 112501,
 Z. Y. Xu et al., Phys. Rev. Lett. 113 (2014) 032501.

• prediction
$$E(2^+) = 2 - 4$$
 MeV

Particle identification

incoming beam, BigRIPS

outgoing beam, ZeroDegree

- ²³⁸U primary beam at 13 pnA for 6 days
- 5.2 pps ⁷⁹Cu and 290 pps ⁸⁰Zn identified in BigRIPS
- detected ~ 1000 events for each (p,2p) and (p,3p) to 78 Ni in ZeroDegree

R. Taniuchi, PhD Thesis, The University of Tokyo, 2018

γ -ray spectra for ⁷⁸Ni

⁷⁹Cu(p, 2p)⁷⁸Ni

- inclusive cross section $\sigma =$ 1.7(4) mb
- highest intensity peak $\rightarrow E(2^+) = 2600(33) \text{ keV}$
- 583(10) keV transition: $4^+ \rightarrow 2^+$ candidate, $R_{4/2} = 1.22(2)$ similar to other doubly magic nuclei

γ -ray spectra for ⁷⁸Ni

⁷⁹Cu(p, 2p)⁷⁸Ni

- inclusive cross section $\sigma =$ 1.7(4) mb
- highest intensity peak $\rightarrow E(2^+) = 2600(33) \text{ keV}$
- 583(10) keV transition: $4^+ \rightarrow 2^+$ candidate, $R_{4/2} = 1.22(2)$ similar to other doubly magic nuclei

 80 Zn $(p, 3p)^{78}$ Ni

- inclusive cross section
 - $\sigma = 0.016(6) \text{ mb}$
- $\blacksquare \ 2^+_1 \rightarrow 0^+_1$ transition not observed
- 2910(43) keV transition: candidate for a 2⁺₂

R. Taniuchi et al., Nature 569 (2019) 53

Theoretical calculations for ⁷⁸Ni

R. Taniuchi et al., Nature 569 (2019) 53

- high 2⁺ energy: doubly-magic character
- large-scale and Monte-Carlo shell model calculations predict spherical ($\beta \sim 0$) ground and deformed intruder excited configurations \rightarrow shape coexistence in ⁷⁸Ni
- lowering of the intruder band in ⁷⁶Fe and ⁷⁴Cr predicted: Island of Inversion
 mass measurements for ⁷⁸Ni and neighbors are crucial

Theoretical calculations for ⁷⁸Ni

R. Taniuchi et al., Nature 569 (2019) 53

- high 2⁺ energy: doubly-magic character
- large-scale and Monte-Carlo shell model calculations predict spherical ($\beta \sim 0$) ground and deformed intruder excited configurations \rightarrow shape coexistence in ⁷⁸Ni
- lowering of the intruder band in ⁷⁶Fe and ⁷⁴Cr predicted: Island of Inversion
- mass measurements for ⁷⁸Ni and neighbors are crucial

Theoretical calculations for ⁷⁸Ni

R. Taniuchi et al., Nature 569 (2019) 53

- high 2⁺ energy: doubly-magic character
- large-scale and Monte-Carlo shell model calculations predict spherical ($\beta \sim 0$) ground and deformed intruder excited configurations \rightarrow shape coexistence in ⁷⁸Ni
- Iowering of the intruder band in ⁷⁶Fe and ⁷⁴Cr predicted: Island of Inversion
- mass measurements for ⁷⁸Ni and neighbors are crucial

Ge based high resolution array will help to clarify the level scheme

Kathrin Wimmer

 masses of ⁵³⁻⁵⁷Ca: gap between v2p_{3/2} and 2p_{1/2} and v2p_{1/2} and 1f_{5/2} → new magic numbers at N = 32,34
 discovery of ⁶⁰Ca
 drip line extende at least to ⁶⁰Ca

Recent results on Ca isotopes

 \rightarrow new magic numbers at N = 32,34

- discovery of ⁶⁰Ca
- drip-line extends at least to ⁶⁰Ca

⁶⁰Ca

incoming beam, BigRIPS

■ ⁷⁰Zn primary beam, 345 MeV/u, 250 pnA

one single setting to cover neutron-rich beams from ⁶⁴V down to ⁴⁹Cl

■ unique *A*/*q* and *Z* identification in BigRIPS and SAMURAI

sufficient statistics for all main objectives

incoming beam, BigRIPS

■ ⁷⁰Zn primary beam, 345 MeV/u, 250 pnA

- one single setting to cover neutron-rich beams from ⁶⁴V down to ⁴⁹Cl
- unique A/q and Z identification in BigRIPS and SAMURAI
- sufficient statistics for all main objectives

⁵²Ar: N = 34 gap below ⁵⁴Ca

- Iargest $E(2^+)$ in Ar isotopes beyond N = 20
- phenomenological interaction SDPF-MU predicts trend well Y. Utsuno et al., Phys. Rev. C 86 (2012) 051301(R), D. Steppenbeck et al., Phys. Rev. Lett. 114 (2015) 252501.
- ab-initio calculations using VS-IMSRG and
- coupled cluster calculations give different results
- N = 34 shell gap persists in ⁵²Ar

H. Liu et al., Phys. Rev. Lett. 122 (2019) 072502.

removed unpublished and preliminary results

High-resolution spectroscopy

Kathrin Wimmer

DALI2 limited by intrinsic and angular resolution

resolution for segmented and tracking detectors at least factor 3 better

- Miniball array available 2019/20 due to CERN long shut down
- GRETA-type quad tracking detector at RCNP Osaka

DALI2 limited by intrinsic and angular resolution

- resolution for segmented and tracking detectors at least factor 3 better
- Miniball array available 2019/20 due to CERN long shut down
- GRETA-type quad tracking detector at RCNP Osaka

DALI2 limited by intrinsic and angular resolution

- resolution for segmented and tracking detectors at least factor 3 better
- Miniball array available 2019/20 due to CERN long shut down
- GRETA-type quad tracking detector at RCNP Osaka

ideal combination with the unique beams at the RIBF

Kathrin Wimmer

High-resolution γ -ray spectroscopy

proposal for a hybrid array based on

- 8 Miniball triple-cluster
- RCNP quad (GRETA type)
- LBNL triple (GRETA type)
- D-AGATA triple

for a total in-beam efficiency of 9.4 %

- LOI to Miniball community
- construction proposal to RIBF PAC
- supported by JSPS Kakenhi Kiban-A

spokespeople:

P. Doornenbal and K. Wimmer

- GEANT4 simulation to optimize geometry
- realistic reaction modeling and resolutions

spectroscopy of ⁷⁹Cu: knockout from ⁸⁰Zn at 200 AMeV on 7 mm Be target

Kathrin Wimmer

4580

4300

Expected performance

first spectroscopy of ⁵⁵Sc

knockout from ⁵⁶Ti at 180 AMeV D. Steppenbeck et al., Phys. Rev. C 96 (2017) 064310.

much better resolving power

• clear $\gamma - \gamma$ coincidences

Expected performance

2500 / 50 keV first spectroscopy of ⁵⁵Sc DALI2 array ŝ 200 ^۲ 2000 HR array knockout from ⁵⁶Ti at 180 AMeV 150 OULTS counts / D. Steppenbeck et al., 1500 Phys. Rev. C 96 (2017) 064310. much better resolving power 1000 100 clear $\gamma - \gamma$ coincidences 500 50 1000 1500 2000 2500 3000 E_v (keV) DALI2 HR array 3135 gate on 695 keV counts (keV) 700 2806 3000 2786 Counts / 50 keV ய்~600 500 245 1730 :39/10) .854121 400 2091(19) 2091 1267 1000 300 1730 200 695 °ò 100 3000 Transition energy (keV) 2000 2500 E, (keV) 500 1000 1500 (7/2n

Kathrin Wimmer

Lifetime effects

- finite lifetimes have an effect on the Doppler corrected energy
- lifetimes can be obtained from peak-shape
- example ¹⁴⁶Ba, decay of the 3⁻ state

- sensitivity 10 100 ps
- shift of peak and tail towards lower energies
- alternative: plunger

Kathrin Wimmer

- GRETA type digitizer for all detectors
- MINOS can be used as well (mechanical design ongoing)
- plunger device for lifetime measurements
- will be combined with MR-TOF system at F11

workshop April 10-12 in Darmstadt, 60 participants, 39 presentations established working groups on

- mechanics (D. Suzuki, RNC)
- detectors and infrastructure (P. Doornenbal, RNC)
- electronics and DAQ (K. Wimmer, U Tokyo)
- MINOS (A. Corsi, CEA Saclay)
- plunger (RCNP, U Köln)
- to be ready for spring 2020

- GRETA type digitizer for all detectors
- MINOS can be used as well (mechanical design ongoing)
- plunger device for lifetime measurements
- will be combined with MR-TOF system at F11

workshop April 10-12 in Darmstadt, 60 participants, 39 presentations established working groups on

- mechanics (D. Suzuki, RNC)
- detectors and infrastructure (P. Doornenbal, RNC)
- electronics and DAQ (K. Wimmer, U Tokyo)
- MINOS (A. Corsi, CEA Saclay)
- plunger (RCNP, U Köln)
- to be ready for spring 2020

call for pre-proposals which will be discussed August 26-28 in Osaka

- in-beam γ -ray spectroscopy at the RIBF, moderate resolution, but high efficiency
- γ -ray spectroscopy at extreme isospin with high intensity fast beams

- in-beam γ -ray spectroscopy at the RIBF, moderate resolution, but high efficiency
- γ -ray spectroscopy at extreme isospin with high intensity fast beams
 - first spectroscopy of the doubly-magic nucleus ⁷⁸Ni
 - \blacksquare \rightarrow robust shell closures at Z = 28 and N = 50
 - second 2^+ state \rightarrow shape coexistence

- in-beam γ -ray spectroscopy at the RIBF, moderate resolution, but high efficiency
- γ -ray spectroscopy at extreme isospin with high intensity fast beams
 - first spectroscopy of the doubly-magic nucleus ⁷⁸Ni
 - \blacksquare \rightarrow robust shell closures at Z = 28 and N = 50
 - second 2^+ state \rightarrow shape coexistence
- first spectroscopy towards ⁶⁰Ca
- \rightarrow N = 34 persists in ⁵²Ar
- see talk by M. L. Cortés on Thursday

- in-beam γ -ray spectroscopy at the RIBF, moderate resolution, but high efficiency
- γ-ray spectroscopy at extreme isospin with high intensity fast beams
 - first spectroscopy of the doubly-magic nucleus ⁷⁸Ni
 - \blacksquare \rightarrow robust shell closures at Z = 28 and N = 50
 - second 2^+ state \rightarrow shape coexistence
- first spectroscopy towards ⁶⁰Ca
- \rightarrow N = 34 persists in ⁵²Ar

see talk by M. L. Cortés on Thursday

- high-resolution campaign at the RIBF approved
- PAC proposals due in October
- $\blacksquare \rightarrow$ unique opportunities with intense beams and high resolution
- lacksquare \rightarrow join the collaboration

S. Chen, P. Doornenbal, H. Liu, A. Obertelli, Y. L. Sun, R. Taniuchi, et al.

The high-resolution collaboration:

N. Aoi, H. Baba, F. Browne, C. Campbell, M. Carpenter, A. Corsi, M.L. Cortés,

H. Crawford, M. Cromaz, P. Doornenbal, P. Fallon, A. Gilibert, H. Hess, E. Ideguchi,

T. Isobe, V. Lapoux, H. Liu, A. Macchiavelli, M. Niikura, O. Möller, S. Nishimura,

A. Obertelli, V. Panin, N. Pietralla, P. Reiter, L. Riley, H. Sakurai, M. Seidlitz, D. Suzuki,

S. Thiel, V. Werner, N. Warr, K. Wimmer, Y. Yamamoto

Funding by JSPS KAKENHI Grant Number JP19H00679

Thank you for your attention