Describing low-energy nuclear reactions with quantum wave-packet dynamics

ALEXIS DIAZ-TORRES

Examples

[◆]⁶Li + ²⁰⁹Bi

• ${}^{12}C + {}^{12}C$

Importance of the Physics of Nuclear Reactions

This physics is crucial for understanding energy production and element creation in the Universe.

Nuclear reactions are the primary probe of the New Physics.

The Physics of Low-Energy Nuclear Reactions

Interplay between **nuclear structure** and **reaction dynamics** determines reaction outcomes (**cross sections**)

Quantum Wave-Packet Dynamics

D.J. Tannor, Quantum Mechanics: a Time-Dependent Perspective, USB, 2007

• **Preparation:** the initial state $\Psi(t = 0)$

- **Time propagation:** $\Psi(0) \rightarrow \Psi(t)$, guided by the operator, $\exp(-i\hat{H}t/\hbar)$ \hat{H} is the model Hamiltonian
- Analysis: extraction of probabilities from the time-dependent wave function

One-Dimensional Toy Model

$$H = \frac{P_{x_{CM}}^{2}}{2M_{T12}} + \frac{P_{\xi}^{2}}{2m_{12}} + U_{12}(\xi) + V_{T1}(x_{CM} - a\xi) + V_{T2}(x_{CM} + b\xi)$$

Describing Fusion

To simulate fusion (irreversibility): acting inside the Coulomb barrier

$$-iW_{TI}(x_1)$$
 &

$$-iW_{T2}(x_2)$$

Preparing the Initial State

Time Propagation

R. Kosloff, Ann. Rev. Phys. Chem. 45 (1994) 145

$$\Psi(t + \Delta t) = \exp\left(-i\frac{\hat{H}\,\Delta t}{\hbar}\right)\Psi(t)$$
$$\exp\left(-i\frac{\hat{H}\,\Delta t}{\hbar}\right) \approx \sum_{n} a_{n} Q_{n}(\hat{H}_{norm})$$

$$\hat{H}_{norm} = \frac{(\bar{H}\,\hat{1} - \hat{H})}{\Delta H}$$

The Chebyshev Propagator

$$a_n = i^n (2 - \delta_{n0}) \exp\left(-i\frac{\bar{H}\,\Delta t}{\hbar}\right) J_n\left(\frac{\Delta H\,\Delta t}{\hbar}\right)$$

Analysis: Slicing the Wave Function

 $\tilde{\Psi}(x_1, x_2, t) = (P_1 P_2 + P_1 Q_2 + Q_1 P_2 + Q_1 Q_2) \tilde{\Psi}(x_1, x_2, t) = \Psi_{CF} + \Psi_{ICF} + \Psi_{SCATT}$

Energy Projection of the Wave Function

Results

Summarising

Boselli & AD-T, Physical Review C **92** (2015) 044610

• Wave-packet dynamics is a useful tool for modelling low-energy fusion dynamics of weakly bound nuclei.

 Complete & incomplete fusion can unambiguously be separated in the configuration space.

 A three-dimensional quantum dynamical model using wave-packet dynamics is being developed.

How do two ¹²C nuclei fuse at sub-barrier energies?

Picture taken from BBC News

AD-T & Wiescher, Physical Review C 97 (2018) 055802

Astrophysical S-Factor for ¹²C + ¹²C Fusion

Coupled-Channels Calculations for ¹²C + ¹²C

Jiang, Esbensen et al., PRL 110 (2013) 072701

The ¹²C + ¹²C Molecular Structure

Greiner, Park & Scheid, in Nuclear Molecules, World Scientific, 1994

Quadrupole deformation of ^{12}C : ~ - 0.5

How does this molecular structure affect low-energy fusion?

Collective Potential-Energy Landscape for ¹²**C** + ¹²**C**

Moeller & Iwamoto, NPA 575 (1994) 381

Role of the imaginary fusion potential in the transmission coefficient

Phase shift analysis of effective potentials for ¹²C + ¹²C

Astrophysical S-Factor for ¹²C + ¹²C **Fusion**

Summarising

AD-T & Wiescher, Physical Review C **97** (2018) 055802

- The fusion imaginary potential for *specific* dinuclear configurations is crucial for the appearance of resonances.
- Three resonant structures are revealed in the calculations, reproducing similar structures in the experimental data.

 Resonant structures in the experimental data that are not explained may be due to cluster effects in the nuclear molecule.

EXTRA SLIDES

Wave-packet dynamics & stationary CRC

Sensitivity of Molecular Shell Structure to the ¹²C Alignment

Results

Energy-resolved total transmission for different values of the spatial width of the initial wave packet

Energy Projection of the Wave Function

Results

Energy-resolved total transmission for different values of the mean energy of the initial wave packet

Coupled-Channels Calculations for ¹²C + ¹²C

Assuncao & Descouvemont, PLB 723 (2013) 355

Fusion Cross Section & Astrophysical S-Factor

$$\eta = (rac{\mu}{2})^{1/2} \, rac{Z_1 \, Z_2 \, e^2}{\hbar \, E^{1/2}} \qquad {egin{array}{c} {
m Sommerfeld} \\ {
m parameter} \end{array}}$$

S(E) represents the fusion cross section free of Coulomb suppression, which is adequate for extrapolation towards stellar energies

Kinetic-Energy of Two Deformed Colliding Nuclei Gatti *et al.*, JCP **123** (2005) 174311

$$\begin{aligned} \frac{2\hat{T}}{\hbar^2} &= -\frac{1}{\mu}\frac{\partial^2}{\partial R^2} + \big(\frac{1}{I_1} + \frac{1}{\mu R^2}\big)\hat{j}_1^2 + \big(\frac{1}{I_2} + \frac{1}{\mu R^2}\big)\hat{j}_2^2 \\ &+ \frac{1}{\mu R^2}\big[\hat{j}_{1,+}\hat{j}_{2,-} + \hat{j}_{1,-}\hat{j}_{2,+} + J(J+1) \\ &- 2k_1^2 - 2k_1k_2 - 2k_2^2\big] - \frac{C_+(J,K)}{\mu R^2}\big(\hat{j}_{1,+} + \hat{j}_{2,+}\big) \\ &- \frac{C_-(J,K)}{\mu R^2}\big(\hat{j}_{1,-} + \hat{j}_{2,-}\big) \end{aligned}$$

 μ is the reduced mass for the radial motion, I_i is the ¹²C rotational inertia, J is the total angular momentum with projection $K = k_1 + k_2$, $C_{\pm}(J,K) = \sqrt{J(J+1)} - K(K \pm 1)$, $\hat{j}_i^2 = -\frac{1}{\sin \theta_i} \frac{\partial}{\partial \theta_i} \sin \theta_i \frac{\partial}{\partial \theta_i} + \frac{k_i^2}{\sin^2 \theta_i}$, $\hat{j}_{i,\pm} = \pm \frac{\partial}{\partial \theta_i} - k_i \cot \theta_i$, with $k_i \to k_i \pm 1$. Initial state $\Psi(t=0)$: the ¹²C nuclei are well separated $\Psi_0(R, heta_1,k_1, heta_2,k_2)\,=\,\chi_0(R)\,\psi_0(heta_1,k_1, heta_2,k_2),$ Radial Internal rotational motion motion $\chi_0(R)\,=\,(\sqrt{\pi}\sigma)^{-1/2}\,\expig[-rac{(R-R_0)^2}{2\sigma^2}ig]\,e^{iP_0(R-R_0)},$ $\psi_0(heta_1,k_1, heta_2,k_2) \;\;=\;\; ig[\zeta_{j_1,m_1}(heta_1,k_1)\zeta_{j_2,m_2}(heta_2,k_2)$ $+(-1)^{J}\zeta_{j_{2},-m_{2}}(\theta_{1},k_{1})\zeta_{j_{1},-m_{1}}(\theta_{2},k_{2})$ $/\sqrt{2+2\,\delta_{j_1,j_2}\delta_{m_1,-m_2}},$ where $\zeta_{j,m}(heta,k) = \sqrt{rac{(2j+1)(j-m)!}{2\,(j+m)!}}\,P_j^m(\cos heta)\,\delta_{km},$ and P_i^m are associated Legendre functions.

Time Propagation of the Wave Function

$\ket{\Psi_J(t)} = e^{-i \,\hat{H} \, t/\hbar} \ket{\Psi_J(0)}$ evolution operator

The evolution operator is represented as a convergent series of modified Chebyshev polynomials

Tannor, Quantum Mechanics from a Time-Dependent Perspective, USB, 2007

Power Spectrum of the Wave Function

$$\mathcal{P}(E) = \langle \Psi(t) | \delta(E - \hat{H}) | \Psi(t) \rangle$$

Energy projector

Reflection & Transmission Coefficients

$$\mathcal{R}(E) = rac{\mathcal{P}^{final}(E)}{\mathcal{P}^{initial}(E)}$$

 $\boldsymbol{T}(E) = 1 - \mathcal{R}(E)$

Fusion Excitation Function for ¹²**C** + ¹²**C**

Fusion Excitation Function for ¹²**C** + ¹²**C**

Transmission coefficients for ¹⁶**O** + ¹⁶**O central collisions**

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,2}*, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G. L. Guardo^{2,4}, M. Gulino^{1,2}, S. Hayakawa^{2,5}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁴, R. G. Pizzone², S. M. R. Puglia², G. G. Rapisarda², S. Romano^{2,3}, M. L. Sergi², R. Spartá² & L. Trache⁴

NATURE | www.nature.com/nature

LETTER

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

