Neutrinoless Double-Beta Decay and Realistic Shell Model

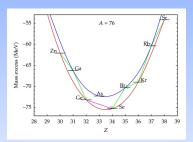
Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

Nuclear Structure and Dynamics - NSD2019

Double β -decay

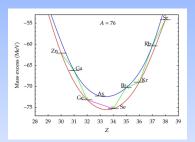
Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.



- Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2)+e^-+e^-+\overline{\nu}_e+\overline{\nu}_e$
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process: $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$

Double β -decay

Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.

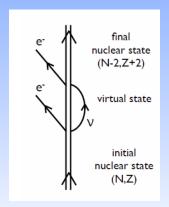


 Maria Goeppert-Mayer (1935) suggested the possibility to detect
 (A, Z) → (A, Z+2)+e⁻+e⁻+v_e+v_e

 Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process: (A, Z) → (A, Z + 2) + e⁻ + e⁻

Double β -decay

Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.



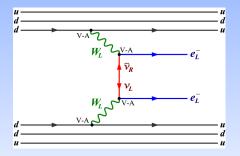
- Maria Goeppert-Mayer (1935) suggested the possibility to detect
 (A, Z) → (A, Z+2)+e⁻+e⁻+v_e+v_e
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process:
 (A, Z) → (A, Z + 2) + e⁻ + e⁻

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

Its detection

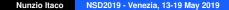
- would correspond to a violation of the conservation of the leptonic number
- may provide more informations on the nature of neutrinos (neutrino as a Majorana particle, determination of its effective mass, ..).

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

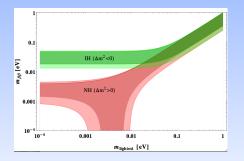


$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_\nu \rangle^2$$

- $G^{0\nu} \rightarrow$ phase-space factor
- $\langle m_{\beta\beta} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix



The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

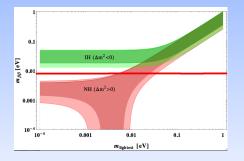


$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu} \rangle^2$$

 constraints from oscillation data

• to exclude IH \Rightarrow m_{$\beta\beta$} = 8meV

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME



$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu} \rangle^2$$

- constraints from oscillation data
- to exclude IH \Rightarrow $m_{\beta\beta} = 8meV$

The calculation of the NME

The nuclear matrix element (NME) is expressed as

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M^{0
u}_F + M^{0
u}_T \; ,$$

where

$$M_{GT}^{0\nu} = <0_{f}^{+} \mid \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} H_{GT}(r_{mn}) \vec{\sigma}_{m} \cdot \vec{\sigma}_{n} \mid 0_{i}^{+} >$$

$$M_F^{0\nu} = <0_f^+ \mid \sum_{m,n} \tau_m^- \tau_n^- H_F(r_{mn}) \mid 0_i^+ >$$

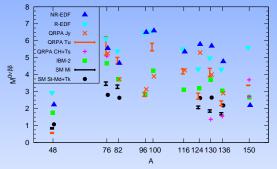
$$M_T^{0\nu} = <0_f^+ \mid \sum_{m,n} \tau_n^- \tau_n^- H_T(r_{mn}) \left[\Im \left(\vec{\sigma}_m \cdot \hat{r}_{mn} \right) \left(\vec{\sigma}_n \cdot \hat{r}_{mn} \right) - \vec{\sigma}_m \cdot \vec{\sigma}_n \right] \mid 0_i^+ >$$

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.



Engel & Menendez Reports on Progress in Physics 80, 046301 (2017)

• The spread of nuclear structure calculations evidences inconsistencies among results obtained with different

Shell model \Rightarrow well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

Napoli-Caserta group

- L. Coraggio (INFN-NA)
- L. De Angelis (INFN-NA)
- T. Fukui (INFN-NA)
- A. Gargano (INFN-NA)
- N. I. (Università "Vanvitelli" and INFN-NA)
- F. Nowacki (IPHC-CNRS Strasbourg)

Two alternative approaches

 $V_{NN}~~(+V_{NNN}) \Rightarrow$ many-body theory $\Rightarrow H_{
m eff}$

The eigenvalues of *H_{eff}* belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- o phenomenological
- microscopic

 V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

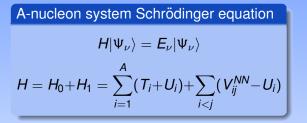
The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

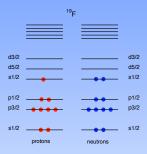
della Campania Luigi Vanvitelli

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- 2 Determine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian and operators by way of a many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

The shell-model effective hamiltonian





The shell-model effective hamiltonian

A-nucleon system Schrödinger equation

$$H|\Psi_{\nu}\rangle = E_{\nu}|\Psi_{\nu}\rangle$$

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$

Model space

$$|\Phi_i\rangle = [a_1^{\dagger}a_2^{\dagger}\dots a_n^{\dagger}]_i|c\rangle \Rightarrow P = \sum_{i=1}^d |\Phi_i\rangle\langle\Phi_i|$$

Model-space eigenvalue problem

$$H_{
m eff} P |\Psi_lpha
angle = E_lpha P |\Psi_lpha
angle$$

¹⁹F d3/2 d3/2 d5/2 d5/2 s1/2 s1/2 p1/2 p1/2 p3/2 s1/2 s1/2 protons neutrons ¹⁹E d3/2 d3/2 d5/2 d5/2 s1/2 s1/2 model sp p1/2 p1/2 p3/2 p3/2 ¹⁶C s1/2 s1/2 protons neutrons

міді тапонеці

Nunzio Itaco

NSD2019 - Venezia, 13-19 May 2019

The perturbative approach to the shell-model $H^{\rm eff}$

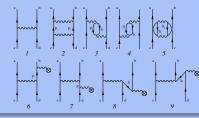
$$H_{\rm eff} = \hat{Q} - \hat{Q}' \int \hat{Q} + \hat{Q}' \int \hat{Q} \int \hat{Q} - \hat{Q}' \int \hat{Q} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots ,$$
$$\hat{Q} \text{ box} \Rightarrow \hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

The perturbative approach to the shell-model H^{eff}

$$H_{\rm eff} = \hat{Q} - \hat{Q}' \int \hat{Q} + \hat{Q}' \int \hat{Q} \int \hat{Q} - \hat{Q}' \int \hat{Q} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots ,$$
$$\hat{Q} \text{ box} \Rightarrow \hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

Perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$



dcglı Studi
 dclla Campania
 Luigi Vanvitelli

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019

Effective operators

 $\Phi_{\alpha} =$ eigenvectors obtained diagonalizing H_{eff} in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta} \rangle$$

Effective operators

 $\Phi_{\alpha} = \text{eigenvectors obtained diagonalizing } H_{\text{eff}}$ in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta}
angle
eq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta}
angle$$

Effective operator $\hat{\Theta}_{eff}$: definition

$$\hat{\Theta}_{\rm eff} = \sum_{\alpha\beta} |\Phi_{\alpha}\rangle \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \langle \Phi_{\beta} |$$
$$\langle \Phi_{\alpha} |\hat{\Theta}_{\rm off} |\Phi_{\beta}\rangle = \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle$$

Effective operators

 $\Phi_{\alpha} = \text{eigenvectors obtained diagonalizing } H_{\text{eff}}$ in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta} \rangle$$

Effective operator $\hat{\Theta}_{eff}$: definition

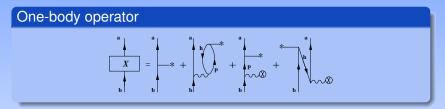
$$\begin{split} \hat{\Theta}_{\rm eff} &= \sum_{\alpha\beta} |\Phi_{\alpha}\rangle \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \langle \Phi_{\beta} | \\ \\ \langle \Phi_{\alpha} |\hat{\Theta}_{\rm eff} |\Phi_{\beta}\rangle &= \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \end{split}$$

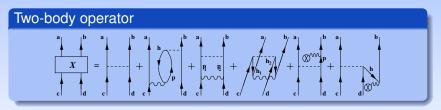
 $\hat{\Theta}_{eff}$ can be derived consistently in the MBPT framework

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

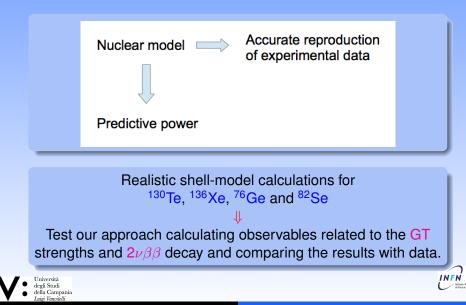
The shell-model effective operators

Università degli Studi





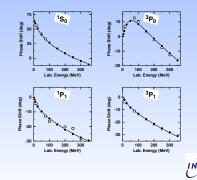
Nuclear models and predictive power



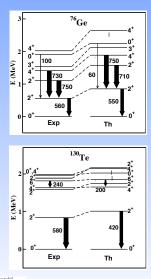
- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni → 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn → 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

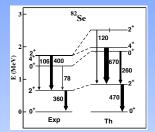
Realistic Shell-Model Calculations

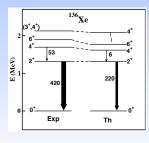
- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni → 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn → 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}
- Input V_{NN} : V_{low-k} derived from the high-precision *NN* CD-Bonn potential with a cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$.
- *H*_{eff} obtained calculating the *Q*-box up to the 3rd order in *V*_{low-k}
- Effective operators are consistently derived by way of the MBPT



Spectroscopic properties (B(E2)s in e²fm⁴)







GT⁻ strength distribution

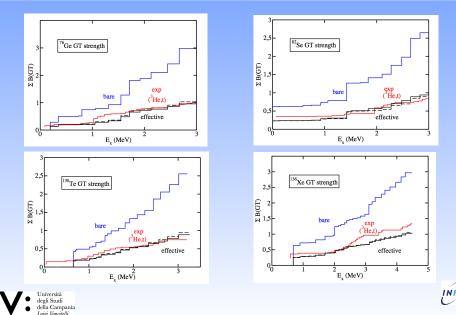
Charge-exchange experiments

$$\left[rac{d\sigma}{d\Omega}(q=0)
ight]=\hat{\sigma}B_{exp}(GT)$$

Theory

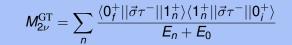
$$B_{th}(ext{GT}) = rac{\left|\langle \Phi_f | \sum_j ec{\sigma_j} ec{ au_j} | \Phi_i
angle
ight|^2}{2J_i + 1}$$

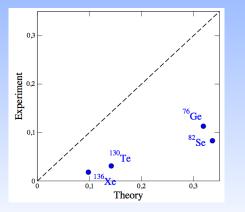
GT⁻ strength distribution



Istituto Nazional di Fisica Naciaar

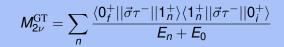
$2\nu\beta\beta$ nuclear matrix elements

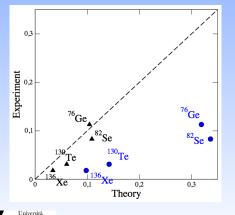




Blue dots: bare GT operator

$2\nu\beta\beta$ nuclear matrix elements





Blue dots: bare GT operator Black triangles: effective GT operator

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

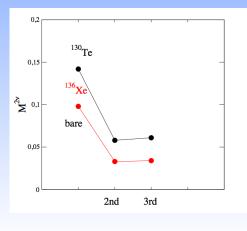
- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?



The calculation of the $0\nu\beta\beta$ NME

The NME is given by

$${\cal M}^{0
u} = {\cal M}^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 {\cal M}^{0
u}_F + {\cal M}^{0
u}_T ~,$$

The matrix elements $M_{\alpha}^{0\nu}$ are defined, for a SM calculation, as follows:

$$\begin{split} M_{\alpha}^{0\nu} &= \sum_{j_{\rho}j_{\rho'}j_{n}j_{n'}J_{\pi}} TBTD\left(j_{\rho}j_{\rho'}, j_{n}j_{n'}; J_{\pi}\right) \left\langle j_{\rho}j_{\rho'}; J^{\pi}T \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{n}j_{n'}; J^{\pi}T \right\rangle \\ & \text{with } \alpha = (GT, \ F, \ T) \end{split}$$

The *TBTD* are the two-body transition-density matrix elements, and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators:

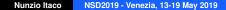
$$\begin{aligned} O_{12}^{GT} &= \vec{\sigma}_1 \cdot \vec{\sigma}_2 H_{GT}(r) \\ O_{12}^F &= H_F(r) \\ O_{12}^T &= [3 \, (\vec{\sigma}_1 \cdot \hat{r}) \, (\vec{\sigma}_1 \cdot \hat{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2] \, H_T(r) \end{aligned}$$

The neutrino potentials H_{α} are defined using the closure approximation

$$H_{lpha}(r)=rac{2R}{\pi}\int_{0}^{\infty}f_{lpha}(qr)rac{h_{lpha}(q^2)}{q+\langle E
angle}qdq$$

where $f_{F,GT}(qr) = j_0(qr)$ and $f_T(qr) = j_2(qr)$, $\langle E \rangle$ is the average energy used in the closure approximation.

- closure approximation
- higher order corrections (HOC)
- finite nucleon size corrections (FNS)



Short-range correlations

Empirical approach

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

Short-range correlations

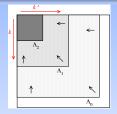
Empirical approach

Jniversità

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

 $V_{\text{low}-k}$: the configurations of $V_{NN}(k, k')$ are restricted to those with $k, k' < k_{\text{cutoff}} = \Lambda$

$$V_{NN}(k,k') \rightarrow V_{\text{low}-k}(k,k') = \Omega^{-1} V_{NN}(k,k') \Omega$$



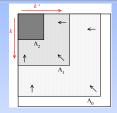
Short-range correlations

Empirical approach

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

 $V_{\text{low}-k}$: the configurations of $V_{NN}(k, k')$ are restricted to those with $k, k' < k_{\text{cutoff}} = \Lambda$

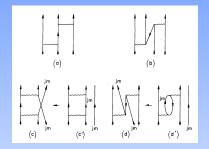
$$V_{NN}(k,k') \rightarrow V_{\text{low}-k}(k,k') = \Omega^{-1} V_{NN}(k,k') \Omega_{k}$$



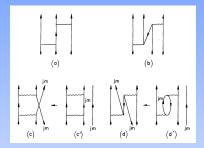
Consistently, we transform the $0\nu\beta\beta$ operator by way of the same similarity transformation Ω

$$\Theta(k,k')
ightarrow \Theta_{
m low-k}(k,k') = \Omega^{-1} \Theta(k,k') \Omega$$

The Pauli blocking effect



The Pauli blocking effect

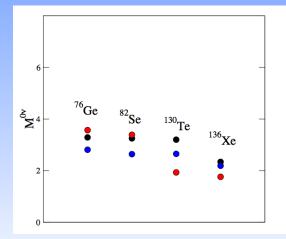


Two-body operator \Rightarrow Three-body operator

We calculate three-body diagrams and sum over one of the incoming/outcoming nucleons

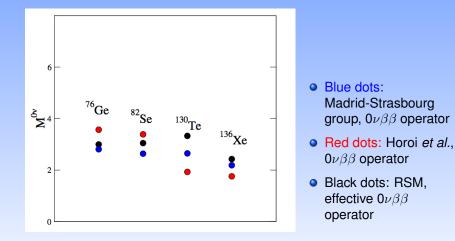
nucleus-dependent effective operator

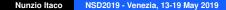
Shell model calculations of $M^{0\nu}$



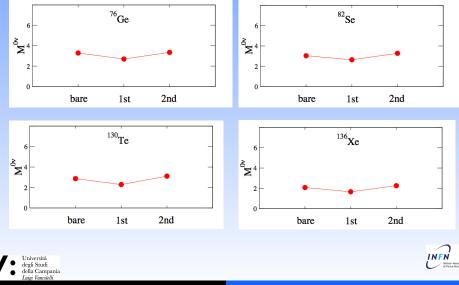
- Blue dots: Madrid-Strasbourg group, 0νββ operator
- Red dots: Horoi *et al.*, $0\nu\beta\beta$ operator
- Black dots: RSM, bare 0νββ operator

Shell model calculations of $M^{0\nu}$

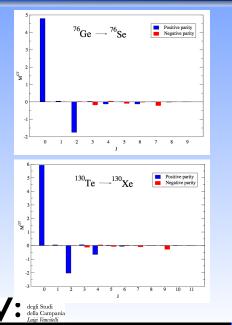


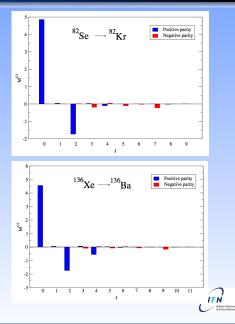


Shell model calculations of $M^{0\nu}$



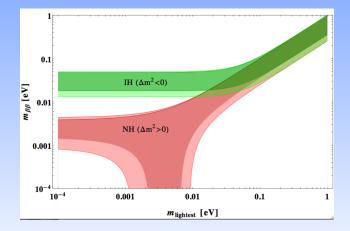
J-pair decomposition





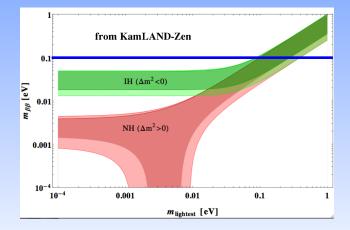
Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019

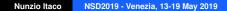
Experimental upper bounds & Sensitivity



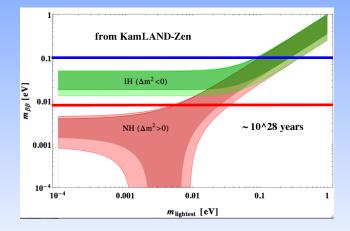
Experimental upper bounds & Sensitivity

Università degli Studi della Campania





Experimental upper bounds & Sensitivity



- $H_{\rm eff}$ derived from chiral two- and three-body potentials: effects of chiral two-body currents (for both $2\nu\beta\beta$ and $0\nu\beta\beta$ decays)
- Beyond closure approximation
- Blocking effect at higher order

Neutrinoless Double-Beta Decay and Realistic Shell Model

Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

Nuclear Structure and Dynamics - NSD2019

