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Double β-decay

Double β-decay (2νECEC) is the rarest process yet observed
in nature.

Maria Goeppert-Mayer (1935)
suggested the possibility to
detect
(A,Z ) → (A,Z +2)+e−+e−+νe+νe

Historically, G. Racah (1937) and
W. Furry (1939) were the first
ones, to suggest to test the
neutrino as a Majorana particle,
considering the process:
(A,Z ) → (A,Z + 2) + e− + e−

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



Double β-decay

Double β-decay (2νECEC) is the rarest process yet observed
in nature.

Maria Goeppert-Mayer (1935)
suggested the possibility to
detect
(A,Z ) → (A,Z +2)+e−+e−+νe+νe

Historically, G. Racah (1937) and
W. Furry (1939) were the first
ones, to suggest to test the
neutrino as a Majorana particle,
considering the process:
(A,Z ) → (A,Z + 2) + e− + e−

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



Double β-decay

Double β-decay (2νECEC) is the rarest process yet observed
in nature.

Maria Goeppert-Mayer (1935)
suggested the possibility to
detect
(A,Z ) → (A,Z +2)+e−+e−+νe+νe

Historically, G. Racah (1937) and
W. Furry (1939) were the first
ones, to suggest to test the
neutrino as a Majorana particle,
considering the process:
(A,Z ) → (A,Z + 2) + e− + e−

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



Neutrinoless double β-decay

The detection of the 0νββ decay is nowadays one of the main
targets in many laboratories all around the world, triggered by
the search of ”new physics” beyond the Standard Model.

Its detection

would correspond to a violation of the conservation of the
leptonic number

may provide more informations on the nature of neutrinos
(neutrino as a Majorana particle, determination of its
effective mass, ..).
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Neutrinoless double β-decay

The inverse of the 0νββ-decay half-life is proportional to the
squared nuclear matrix element (NME).
This evidences the relevance to calculate the NME[

T 0ν
1/2

]−1
= G0ν

∣∣∣M0ν
∣∣∣2 〈mν〉2

G0ν → phase-space factor
〈mββ〉 =|

∑
k mkU2

ek |
effective mass of the
Majorana neutrino, Uek
being the lepton mixing
matrix

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



Neutrinoless double β-decay

The inverse of the 0νββ-decay half-life is proportional to the
squared nuclear matrix element (NME).
This evidences the relevance to calculate the NME[

T 0ν
1/2

]−1
= G0ν

∣∣∣M0ν
∣∣∣2 〈mν〉2

constraints from oscillation
data
to exclude IH ⇒
mββ = 8meV

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



Neutrinoless double β-decay

The inverse of the 0νββ-decay half-life is proportional to the
squared nuclear matrix element (NME).
This evidences the relevance to calculate the NME[

T 0ν
1/2

]−1
= G0ν

∣∣∣M0ν
∣∣∣2 〈mν〉2

constraints from oscillation
data
to exclude IH ⇒
mββ = 8meV

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



The calculation of the NME

The nuclear matrix element (NME) is expressed as

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F + M0ν

T ,

where

M0ν
GT =< 0+

f |
∑
m,n

τ−m τ
−
n HGT (rmn)~σm · ~σn | 0+

i >

M0ν
F =< 0+

f |
∑
m,n

τ−m τ
−
n HF (rmn) | 0+

i >

M0ν
T =< 0+

f |
∑
m,n

τ−m τ
−
n HT (rmn) [3 (~σm · r̂mn) (~σn · r̂mn)− ~σm · ~σn] | 0+

i >

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



The calculation of the NME

To describe the nuclear properties detected in the experiments,
one needs to resort to nuclear structure models.
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Realistic Shell-Model Calculations

Shell model ⇒ well-established approach to obtain a
microscopic description of both collective and single-particle
properties of nuclei

Napoli-Caserta group

L. Coraggio (INFN-NA)
L. De Angelis (INFN-NA)
T. Fukui (INFN-NA)
A. Gargano (INFN-NA)
N. I. (Università ”Vanvitelli” and INFN-NA)
F. Nowacki (IPHC-CNRS Strasbourg)
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Realistic Shell-Model Calculations

Focus on 76Ge, 82Se, 130Te, and 136Xe.
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Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an
effective way all the degrees of freedom not explicitly
considered

Two alternative approaches
phenomenological
microscopic

VNN (+VNNN) ⇒ many-body theory ⇒ Heff

Definition
The eigenvalues of Heff belong to the set of eigenvalues of the
full nuclear hamiltonian
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Workflow for a realistic shell-model calculation

1 Choose a realistic NN potential (NNN)
2 Determine the model space better tailored to study the

system under investigation
3 Derive the effective shell-model hamiltonian and operators

by way of a many-body theory
4 Calculate the physical observables (energies, e.m.

transition probabilities, ...)
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The shell-model effective hamiltonian

A-nucleon system Schrödinger equation

H|Ψν〉 = Eν |Ψν〉

H = H0+H1 =
A∑

i=1

(Ti+Ui)+
∑
i<j

(V NN
ij −Ui) p3/2

p1/2

s1/2

19F

protons neutrons

s1/2

d5/2
d3/2

s1/2

p3/2
p1/2

s1/2
d5/2
d3/2

Model space

|Φi〉 = [a†1a†2 ... a†n]i |c〉 ⇒ P =
d∑

i=1

|Φi〉〈Φi |

Model-space eigenvalue problem

HeffP|Ψα〉 = EαP|Ψα〉

16O

p3/2
p1/2

s1/2

19F

protons neutrons

s1/2

d5/2
d3/2

s1/2

p3/2
p1/2

s1/2
d5/2
d3/2

model space
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The perturbative approach to the shell-model Heff

Heff = Q̂ − Q̂
′
∫

Q̂ + Q̂
′
∫

Q̂
∫

Q̂ − Q̂
′
∫

Q̂
∫

Q̂
∫

Q̂ · · · ,

Q̂ box ⇒ Q̂(ε) = PH1P + PH1Q
1

ε− QHQ
QH1P

Perturbative expansion

1
ε− QHQ

=
∞∑

n=0

(QH1Q)n

(ε− QH0Q)n+1

1 2 3 4 5

6 7 8 9

a b b ba a a

c c c cd d d

a

aa b

b

c c

b

hp

h
p hpp

a ab b

c c cd d d

p

p
h h

c d

2
h
1

1 2
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Effective operators

Φα = eigenvectors obtained diagonalizing Heff in the reduced
model space ⇒ |Φα〉 = P|Ψα〉

〈Φα|Θ̂|Φβ〉 6= 〈Ψα|Θ̂|Ψβ〉

Effective operator Θ̂eff: definition

Θ̂eff =
∑
αβ

|Φα〉〈Ψα|Θ̂|Ψβ〉〈Φβ|

〈Φα|Θ̂eff|Φβ〉 = 〈Ψα|Θ̂|Ψβ〉

Θ̂eff can be derived consistently in the MBPT framework

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93 , 905 (1995)
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The shell-model effective operators

One-body operator

*

*
*

*
a

b

a

b

a

b

a

b

h
pp

h

b

=X

a

Two-body operator
a

=X

a b

c d

h

p

b a b a a a ab b bb

c c c c c cdd d d d d

h

p

h
p p

21
1

h2
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Nuclear models and predictive power

Realistic shell-model calculations for
130Te, 136Xe, 76Ge and 82Se

⇓
Test our approach calculating observables related to the GT

strengths and 2νββ decay and comparing the results with data.
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Realistic Shell-Model Calculations

76Ge,82Se: four proton and neutron orbitals outside
double-closed 56Ni → 0f5/2,1p3/2,1p1/2,0g9/2

130Te,136Xe: five proton and neutron orbitals outside
double-closed 100Sn → 0g7/2,1d5/2,1d3/2,2s1/2,0h11/2

Input VNN : Vlow−k derived
from the high-precision NN
CD-Bonn potential with a
cutoff: Λ = 2.6 fm−1.

Heff obtained calculating the
Q-box up to the 3rd order in
Vlow−k

Effective operators are
consistently derived by way of
the MBPT
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Spectroscopic properties (B(E2)s in e2fm4)
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GT− strength distribution

Charge-exchange experiments[
dσ
dΩ

(q = 0)

]
= σ̂Bexp(GT )

Theory

Bth(GT) =

∣∣∣〈Φf |
∑

j ~σj~τj |Φi〉
∣∣∣2

2Ji + 1
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GT− strength distribution
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2νββ nuclear matrix elements

MGT
2ν =

∑
n

〈0+
f ||~στ

−||1+
n 〉〈1+

n ||~στ−||0+
i 〉

En + E0

Blue dots: bare GT operator

Nunzio Itaco NSD2019 - Venezia, 13-19 May 2019



2νββ nuclear matrix elements

MGT
2ν =

∑
n

〈0+
f ||~στ

−||1+
n 〉〈1+

n ||~στ−||0+
i 〉

En + E0

Blue dots: bare GT operator
Black triangles: effective GT

operator
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2νββ nuclear matrix elements perturbative properties

RSM calculations provide a satisfactory description of
observed GT-strength distributions and 2ν2β NME
what about perturbative properties ?
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The calculation of the 0νββ NME

The NME is given by

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F + M0ν

T ,

The matrix elements M0ν
α are defined, for a SM calculation, as follows:

M0ν
α =

∑
jp jp′ jn jn′Jπ

TBTD (jp jp′ , jnjn′ ; Jπ)
〈
jp jp′ ; JπT | τ−1 τ

−
2 Oα

12 | jnjn′ ; JπT
〉

with α = (GT , F , T )

The TBTD are the two-body transition-density matrix elements, and
the Gamow-Teller (GT ), Fermi (F ), and tensor (T ) operators:

OGT
12 = ~σ1 · ~σ2HGT (r)

OF
12 = HF (r)

OT
12 = [3 (~σ1 · r̂) (~σ1 · r̂)− ~σ1 · ~σ2] HT (r)
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Light Majorana neutrino exchange

The neutrino potentials Hα are defined using the closure
approximation

Hα(r) =
2R
π

∫ ∞

0
fα(qr)

hα(q2)

q + 〈E〉
qdq

where fF ,GT (qr) = j0(qr) and fT (qr) = j2(qr), 〈E〉 is the average
energy used in the closure approximation.

closure approximation
higher order corrections (HOC)
finite nucleon size corrections (FNS)
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Short-range correlations

Empirical approach

ψnl → [1 + f (r)] ψnl f (r) = −ce−ar2
(1 − br2)

Vlow−k: the configurations of VNN(k , k ′) are
restricted to those with k , k ′ < kcutoff = Λ

VNN(k , k ′) → Vlow−k(k , k ′) = Ω−1VNN(k , k ′)Ω
R0

R1

R2

k’

k

Consistently, we transform the 0νββ operator by way of the
same similarity transformation Ω

Θ(k , k ′) → Θlow−k(k , k ′) = Ω−1Θ(k , k ′)Ω
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R0

R1

R2

k’

k

Consistently, we transform the 0νββ operator by way of the
same similarity transformation Ω

Θ(k , k ′) → Θlow−k(k , k ′) = Ω−1Θ(k , k ′)Ω
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The Pauli blocking effect

822 P. J. Ellis and E. Osnes: Effective operators in nuclei

TABLE X. Comparison of important second-order effective charge diagrams with the corre-
sponding third-order effective interaction diagrams.

Class of diagrams

Effective charge
Egg / 2—GEg / p

N P

Effective interaction"
&a,'» v = o, T = I ~u. ~ a,'~, z= o, r = I&

(in MeV)

Verte~
TDA
Ladder
Number conserving
Total

—0.038
0.081
0.056
0.012
0.111

-0.060
0.129
0.012
—0.060
0.021

0.478
-0.241
-0.185
0.118
0.170

Ellis and Siegel, 1971 and unpublished work.
Barrett and Kirson, 1970, 1972; Barrett, 1972.

understood by reference to Table X. Here we compare
second-order diagrams for the effective charge with the
corresponding third-order diagrams for the effective
interaction. The vertex;correction diagram is seen to
be relatively much bigger for the effective interaction
than for the neutron effective charge, and thus in the
former case the TDA is much too large, whereas it is
fairly reasonable in the latter. Now comparing neutron
and proton effective charges from the matrix calculation
with the first-order results, we find an increase in mag-
nitude for neutrons, whereas the proton case shows a
much smaller increase or even a reduction. From Table
X we see that this behavior arises firstly from the lad-
der diagram, which is much smaller for protons. Sec-
ondly, the number-conserving sets give a large nega-
tive value for protons. Much of this comes from the
folded diagrams which normalize the initial and final
wave functions (see Sec. II.D.). The importance of nor-
malization effects has been stressed by Qoode et a1.
(1972). Incidentally, this reference contains an interest-
ing decomposition of the matrix approach, which shows
the sequence of approximations needed to obtain the
TDA
It should be noted that the 2P-1h and 3P-2h. bases used

here will contain spurious components which involve
excitations of the center-of-mass of the whole nucleus,
as well as the intrinsic excitations that are physically
relevant. Ando eg ~E. (1977) have found that the approxi-
mate elimination of spurious states leads to a more
attractive effective interaction, although the effective
charge is little changed. Perhaps more attention should
be paid to this difficult question of spurious effects in
truncated bases, but we shall not discuss it further here.
Finally we mention that a matrix calculation has been

performed with a basis consisting of the (sd )' valence
states plus all 2A&u excitations (Watt et al. , 1974). This
enormous calculation is only possible using the power-
ful Glasgow shell-model technique. Unfortunately, there
is no known way to obtain just the linked two-body effec-
tive interaction with this technique. It is therefore diffi-
cult to know what weight to attach to the results, which
suggest that the correction to the bare effective inter-
action is somewhat overestimated by second-order per-
turbation theory. Note, however, that this is in agree-
ment with the trend shown in Table VIII.
Summary. In making comparison between perturba-

tion calculations and the "exact" results from matrix

diagonalizations, great care is needed to eliminate ex-
traneous effects, in particular, unlinked diagrams.
Third-(second-)order perturbation theory for the effec-
tive interaction (charge) often gives good results, but
its accuracy cannot be relied on. The TDA approxima-
tion is fairly reasonable for the neutron effective charge,
but is strongly cut back by vertex corrections for the
effective interaction and proton effective charge. In the
latter case normalization effects are also important.

G. Many-body effective operators
We have in this review restricted our attention to the

calculation of the two-body effective interaction and the
one-body effective charge appropriate to the nuclear
shell model. These quantities are frequently applied to
studies of nuclei involving many particles. However,
we have pointed out in Sec. II that in many-particle sys-
tems the effective operators in question will have many-
body components. Note that we are not talking here
about many-body nuclear forces. Even if we start from
a basic two-nucleon interaction, many-body effective
forces will arise from using a truncated valence space.
Examples of three-body effective forces are shown in
Fig. 53. Diagram (a) arises as one particle is excited

(b)

jmP

(c)
FIG. 53. Second-order contributions to the three-body effec-
tive interaction. Diagrams (c) and (d) are particular cases of
diagrams (a) and (b) and arise from corrections for violation
of the Pauli exclusion principle, as shown.

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977

Two-body operator ⇒ Three-body operator

We calculate three-body diagrams and sum over one of the
incoming/outcoming nucleons

⇓
nucleus-dependent effective operator
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Shell model calculations of M0ν

Blue dots:
Madrid-Strasbourg
group, 0νββ operator

Red dots: Horoi et al.,
0νββ operator

Black dots: RSM, bare
0νββ operator
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Shell model calculations of M0ν
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J-pair decomposition
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Experimental upper bounds & Sensitivity
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Perspectives

Heff derived from chiral two- and three-body potentials:
effects of chiral two-body currents (for both 2νββ and 0νββ
decays)
Beyond closure approximation
Blocking effect at higher order
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