

Contribution ID: 160 Type: Poster

Nuclear structure studies of exotic nuclei: the case of 31Ar

The 31 Ar nucleus is one of the most exotic β -delayed particle precursors, at the proton drip-line, with high Q-value and low proton separation energy. Therefore, different decay modes are open (β 1p- β 3p) [1]. The aim of the IS577 experiment performed at the ISOLDE Decay Station (IDS-CERN) [2] was to provide relevant information on the resonances of 31 Cl and 30 S, populated in the beta decay of 31 Ar.

The set-up used consisted of 5 Double Sided Si Strip Detectors (DSSD) backed by un-segmented Si-pad detectors in Δ E-E telescope configuration. This Si-array is located inside the new MAGISOL Si-Plugin Chamber, installed at the new permanent station IDS, devoted to β -decay measurements. In addition, there are 4 HPGe clover-detectors surrounding the chamber for gamma detection. This set-up is very compact with both high efficiency (Ω_p =45.5%) and good energy resolution (25 keV) for multi-particle emission, needed to characterize the different p-channels of 31 Ar.

New results will be presented here, such as the observation of new proton transitions and the identification of new excited states of 31 Cl thanks to the proton-gamma coincidence technique. In addition, three new levels of 30 S in the range from 8 up to 9 MeV of excitation energy have been observed extending the knowledge of excited state in 30 S to higher energies. Furthermore, we have experimentally determined for the first time the partial proton-gamma width of several states of 30 S located just above the proton separation energy, relevant for the astrophysical rp-process, present in certain stellar environments such as classical novae [3]. Our experimental determination of the values of partial widths can reduce the uncertainty in the values of the rate of the 29 P(p,y) 30 S reaction.

- [1] G.T. Koldste et al., Phys. Rev. C 89, 064315 (2014)
- [2] http://isolde-ids.web.cern.ch/isolde-ids/
- [3] G.T. Koldste et al. Phys. Lett. B 737 (2014) 383-387.

Primary author: MARROQUIN ALONSO, Irene (IEM-CSIC)

Co-authors: Prof. TENGBLAD, Olof (IEM - CSIC); Dr NACHER, Enrique (IEM-CSIC); BORGE, M. J. G. (Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain); Mr PEREA, Angel (IEM-CSIC)

Presenter: MARROQUIN ALONSO, Irene (IEM-CSIC)

Session Classification: POSTER SESSION