

Contribution ID: 151

Type: Poster

Study of the neutron-rich region in the vicinity of ²⁰⁸Pb via multinucleon transfer reactions

The production of neutron-rich heavy nuclei in the vicinity of N = 126 shell closure has received a boost of interest recently, since the properties of these nuclei are fundamental for the understanding of the actual path of r-process and synthesis of the heavy elements. The nuclear structure studies in the region close to the double magic 208 Pb nucleus, where benchmark cases are expected, may significantly improve our understanding of the effective interaction. Therefore, it is of great importance to overcome the difficulties in production of those neutron-rich heavy nuclei and in their direct identification with present techniques. A promising mechanism for their production is the use of the multinucleon transfer (MNT) reactions. This mechanism was extensively used for the nuclear structure and dynamics studies, mostly for the neutron-rich nuclei [1,2] in vicinity of the light partner.

A recent development of neutron-rich heavy-ion beams paved a way to populate the neutron-rich region around the heavy partner by the use of the MNT [3,4]. We performed a first measurement of the transfer reactions in the 94 Rb+ 208 Pb system at energy close to the Coulomb barrier at HIE-ISOLDE. The high-resolution MINIBALL spectrometer, coupled to a position sensitive silicon detector, provided the selection of the transfer channels via the associated γ rays. The yields in the neutron transfer channels will be presented and compared with the reaction models. The preliminary results demonstrate that the dominant transfer flux is towards the neutron-rich Pb isotopes, showing that the MNT with the use of the neutron-rich beams is a suitable reaction mechanism to populate moderately neutron rich heavy nuclei.

- 1. L. Corradi, G. Pollarolo, S. Szilner, J. of Phys. G 36 (2009) 113101.
- 2. D. Montanari et al., Phys. Rev. Lett. 113 (2014) 052501.
- 3. T. Mijatović et al., Phys. Rev. C 94 (2016) 064616.
- 4. F. Galtarossa et al., Phys. Rev. C 97 (2018) 054606.

Primary authors: COLOVIC, Petra (Ruder Boskovic Institute); ILLANA SISON, Andres (LNL); SZILNER, Suzana (Ruder Boskovic Institute); Dr VALIENTE-DOBON, Javier (LNL); BENZONI, G. (Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy); BOSO, Alberto (National Physical Laboratory); BORGE, M. J. G. (Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain); CERUTI, Simone (MI); CORRADI, Lorenzo (LNL); Dr CUBISS, J. G. (Department of Physics, University of York, York, United Kingdom); DE ANGELIS, Giacomo (LNL); FIORETTO, Enrico (LNL); GALTAROSSA, Franco (LNL); GAFFNEY, L. P. (ISOLDE, CERN, Geneva, Switzerland); JURADO-GOMEZ, M. L. (Instituto de Física Corpuscular CSIC, Valencia, Spain); KRÖLL, Thorsten (TU Darmstadt); MARCHI, Tommaso (INFN - LNL); MENEGAZZO, Roberto (PD); Dr MENGONI, Daniele (University and INFN Padova); MIJATOVIC, Tea (Ruder Boskovic Institute); NAPOLI, Daniel Ricardo (LNL); PODOLYAK, Zsolt (University of Surrey); RECCHIA, Francesco (University and INFN Padova); Dr TESTOV, Dmitry (University and INFN Padova)

Presenter: COLOVIC, Petra (Ruder Boskovic Institute)

Session Classification: POSTER SESSION