Structure of neutron-rich Ge STIVERSITE and Se isotopes

Dr. Anne Marie Forney

University of Maryland

18

56

Department of Chemistry and Biochemistry

Motivation

- Neutrinoless double β decay candidates: ⁷⁶Ge and ⁸²Se
- Fidelity of the N=50 and Z=32 shell and subshell closures
- Shaped debated in ⁷⁸Ge
- Shape deformation, shape coexistence and triaxiality reported in ^{72,74,76}Ge
- Triaxiality predicted in Ge nuclei
- Is there deformation in Se isotones?

Triaxiality in Ge nuclei

- Deformed structure and departure from an axial symmetry
- Triaxial? Closeness of 3⁺ to 2⁺ levels.
- Larsson. Leander. Ragnarsson, Alenius strong shell structure around $\gamma = 30^{\circ}$ for particle numbers 26, 32 and 44 (46).
 - Used ^{72,76}Ge as examples
 - Ragnarsson, Nilsson and Sheline (Physics Reports 45 (1) 1978) identified certain nuclei as attractive for the presence of a stable triaxial minimum
 - Neutron or Proton numbers: 26, 32, 44, or 46
 - Predicted ⁷⁶Ge would be an ideal candidate as a "triaxial double-magic nucleus"
 - Note: ⁷⁸Ge is also a candidate for triaxial double-magicity.

Gammasphere array (4π detector)

- Argonne National Laboratory ATLAS facility
 - 4π detector array
 - Can hold up to 110 Ge/BGO detectors
 - Argonne Tandem Linear Accelerator System (ATLAS)
- Multi-nucleon transfer reactions
- Detecting de-excitation of $\boldsymbol{\gamma}$ rays
 - Triple Coincidences

The ANL-Gammasphere deep inelastic reaction data sets

¹⁹⁸Pt,¹⁹⁷Au,²⁰⁸Pb,²³⁸U targets

Applying the shell model

p_{3/2}

f_{7/2}

- NuShellX
 - Alex Brown (MSU)
- jj44 model space g_{9/2}
- Two Hamiltonians ^p_{1/2}
 - jj44b
 - Jun45
- Level energies
- B(E2) values
- Occupation Numbers

40

G. M. Pinedo Shell Model Applications in Nuclear Physics and Astrophysics 10th Euro Summer School on Exotic Beams

Protons (32-34)

- ► (a) 619-keV $2_1^+ \rightarrow 0_1^+$ in a 950-keV $4_1^+ \rightarrow 2_1^+$ gate
- ► (b) 619-keV $2_1^+ \rightarrow 0_1^+$ in a 567-keV $2_2^+ \rightarrow 2_1^+$ gate.

OF

⁷⁸Ge

- Confirmed transitions seen in β-decay (using delayed coincidences)
- β-decay parent is confirmed to be a 2⁻, not 3⁺

Spin and Parity assignments from Angular Correlations

A novel $\Delta J = 1$ sequence in ⁷⁸Ge: possible evidence for triaxiality

A. M. Forney,^{1,*} W. B. Walters,^{1,†} C. J. Chiara,^{1,2,‡} R. V. F. Janssens,^{2,3} A. D. Ayangeakaa,^{2,4} J. Sethi,¹ J. Harker,^{1,2} M. Alcorta,^{2,5} M. P. Carpenter,² G. Gürdal,^{6,7} C. R. Hoffman,² B. P. Kay,² F. G. Kondev,^{6,§} T. Lauritsen,² C. J. Lister,^{2,8} E. A. McCutchan,^{2,9} A. M. Rogers,^{2,8} D. Seweryniak,² I. Stefanescu,^{1,2} and S. Zhu²

⁷⁸Ge missing E2 cross-over transitions

⁷⁸Ge missing E2 cross-over transitions

Relative intensities normalized to the 951 keV transition, Members of the κ-band, E1 transitions, and missing transitions

E _{lev} (KeV)	E _γ (KeV)	E _f (KeV)	Upper limit Intensity
3295	976	2319	2.5
2319	1700	619	0.1
	1134	1186	0.6
	749	1570	0.6
2760	1114	1644	0.6
	1190	1570	0.1

Halflives: W.-T. Chou et al., Phys. Rev. C 47 (1993).

Do results line up with theory?

- What do current theoretical transitions predict in ⁷⁸Ge
 - Do they suppress the E2 transition rates (blue transitions)?

Davydov-Filippov-Rostovsky with γ =30° for ⁷⁸Ge

<u>6192</u>

0.14

1.75

0.04

<u>1238</u> 1.43

<u>4128</u>

0.73

495

3096

619

1.91

1.73

0.99

5573

0.46

0.05

1.59

0.56

<u>1857</u> <u>1.00</u>

Occurs when these states have lost all symmetry.

Ē

-B(E2) arbitrary scale -Energies scaled to yrast $2 \rightarrow 0$ -Produces THREE 4+ levels

> Despite years of popularity of the Davydov model because of its simplicity and analytic formulas, there is virtually no evidence for rigid triaxial behavior. Axial asymmetry in nuclei seems associated with y softness instead.

> > Casten 1990

MARYLAND

Sequence unlike neighbors

	⁷⁶ Ge	⁷⁸ Ge
4 ⁺ decay	ΔJ= 0, 1, 2	ΔJ=1
4+→ 2+ branching	50 %	2 % (upper limit)
B(E2) 4+→2+ (W.u.)	18 (8)	0.007 (calculated upper limit)
δ (mixing ratio)	A2=+0.0167 , A4 =+0.049. $4_2^+ \rightarrow 4_1^+$	A2=+0.0157 (0.016), A4 =+0.074 (0.023). $4^+ \rightarrow 3^+, 3^+ \rightarrow 2^+_2$

OF

Y. Toh et al,. Phys Rev C 87, (2013) 041304 (R).

FIG. 1. Partial level scheme of ⁷⁶Ge deduced from the prompt data in this work. Level and transition energies are given in keV. Only those states relevant to the discussion are shown; all are given in Table I.

Evidence for rigid triaxial deformation at low energy in ⁷⁶Ge

Y. Toh, ^{1,2} C. J. Chiara, ^{2,3} E. A. McCutchan, ^{2,4} W. B. Walters, ³ R. V. F. Janssens, ² M. P. Carpenter, ² S. Zhu, ² R. Broda, ⁵ B. Fornal, ⁵ B. P. Kay, ² F. G. Kondev, ⁶ W. Królas, ⁵ T. Lauritsen, ² C. J. Lister, ^{2,*} T. Pawłat, ⁵ D. Seweryniak, ² I. Stefanescu, ^{2,3} N. J. Stone, ^{7,8} J. Wrzesiński, ⁵ K. Higashivama, ⁹ and N. Yoshinaga¹⁰

TABLE I. Staggering values S(J) observed in the even ${}_{32}\text{Ge}$ and ${}_{34}\text{Se}$ isotopes for J = 4, 5, 6.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		⁷⁸ Ge46	⁷⁶ Ge44	$^{74}\text{Ge}_{42}$	⁷² Ge ₄₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(4)	0.35	0.09	-0.04	-0.24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(5)	-0.38	-0.03	0.11	0.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(6)	0.15	0.15	0.14	-0.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		⁸⁰ Se ₄₆	78 Se ₄₄	76 Se ₄₂	74 Se ₄₀
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(4)	-0.36	-0.25	-0.16	-0.53
S(6) -0.17 0.03 -0.28	S(5)		0.25	0.15	0.4
	S(6)		-0.17	0.03	-0.28

D. VERNEY et al.

PHYSICAL REVIEW C 87, 0

PHYSICAL REVIEW C 78, 021304(R) (2008)

Persistence of the N = 50 shell closure in the neutron-rich isotope ⁸⁰Ge

*side of 1896 peak—leak through

 $(0^+, 1, 2)$

(5-)

(3-

4566.2 4391.4

4094.3 4036.2

3917.9

3865.08 3831.0

4081.2

0.13 ps 3

0.17 ps +1

<u>14⁺ 878</u>6

25

<u>3990</u> 5⁺

Anne Marie Forney, NSD2019

Anne Marie Forney, NSD2019

Conclusions and Questions

- Newly reported transitions in ^{78,80}Ge and ^{80,82}Se
- Clarify doublet at 2323 keV in ⁸⁰Ge and states in ⁸²Ge
- NuShellX does an adequate job describing states
 - Negative parity states in ⁸⁰Ge and ⁸²Se
 - Cannot describe cross-shell states in this model space
- DFR best model to describe missing $\Delta J=2$ transitions in ⁷⁸Ge
 - The measured half-life of the 4+ level provides assurance that the issue is NOT a super-fast M1 transition.
 - Identified long-sought unique structure rigid nucleus without degrees of symmetry
 - How can a wave function be devised for 4⁺ 5⁺ and 6⁺ levels that do not respond to the quadrupole operator?

Thank you!

- University of Maryland College Park: Dr. W.B. Walters, Dr. J. Sethi, Dr. C.J. Chiara (US Army Research Lab), Ms. J. Harker
- University of North Carolina at Chapel Hill: Dr. R.V.F. Janssens
- United States Naval Academy: Dr. A.D. Ayangeakaa
- Argonne National Laboratory: Dr. S. Zhu, M. Carpenter, Dr. M. Alcorta (TRIUMF), Dr. G. Gürdal, Dr. C.J. Hoffman, Dr. B.P. Kay, Dr. F.G. Kondev, Dr. T. Lauristen, Dr. C.J. Lister (University of Massachusetts Lowell), Dr. E.A. McCutchan (Brookhaven National Laboratory), Dr. A.M. Rogers (University of Massachusetts Lowell), Dr. D. Seweryniak
- Yale University: Rick Casten
- Michigan State University: Alex Brown
- This research is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant No.DE-FG02- 94ER40834 and Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.

γ deformation: fixed (rigid) or unstable (soft)? Permanent

Davydov Filippov 1958 $\gamma = 30^{\circ}$ TRIAXIAL ROTOR 8° 50 5) 40 E (J) (ħ²/ 4B β² 00 00 6⁺ 6, 3, 4† 2^{\dagger}_{γ} 10 2_{a}^{+} . 20° 30° 0° 10 γ

γ - unstable (Wilets - Jean) 1956

Fig. 6.21. Dependence of ground band energies on spin for different models. An identical set of curves is obtained in the U(5), O(6), and SU(3) symmetries of the IBA (see Eq. 6.72).

The three previous experimental works overlaid.

Calculating B(E2) of unobserved 1133-keV γ ray 2319 keV level in ^{78}Ge

t_{1/2} = 43.0 (5.5) ps (Chou) $\lambda = \ln(2)/t_{1/2}$ 1133 keV B.R. < 2 % Partial half-life: >2.15 (28) ns = 43 ps *100/2 Weisskopf transition rates Multipole E, $\lambda(s^{-1})$ M, $\lambda(s^{-1})$ >2,150 ps $3.15 \ge 10^{14} E_{\gamma}^3$ From Weisskopf estimate it is 15.3 ps 2.24 x 10⁷ $A^{2/3} E_{\gamma}^{5}$ 1.04 x 10¹ $A^{4/3} E_{\gamma}^{7}$ 2 $3.39 \ge 10^1 A^2 E_{\gamma}^{7'}$ 3 $1.07 \ge 10^{-5} A^{8/3} E_{\sim}^{9}$ $3.27 \ge 10^{-6} A^2 E_{\gamma}^9$ 4 2.40 x 10⁻¹² $A^{10/3}$ E_{\sim}^{11} 7.36 x $10^{-13} A^{8/3} E_{\gamma}^{11}$ $B(E2) = t_{1/2} (theo) / t_{1/2} (obs)$ 5

B(E2) < 0.007 (1) W.u.

39

⁸⁰Ge

- N = 48, 2 neutron holes
 - Adds complexity
 - Purple: neutron states $-g_{9/2} p_{3/2}, g_{9/2} f_{5/2}, g_{9/2} p_{1/2}$
 - Negative parity
- ⁸⁰Ga β-decay parent: J=3⁻ and J=6⁻
- Yrast 2⁺, 4⁺ due to breaking the f_{5/2} proton pair
- Red levels: Two-particle states of f_{5/2} p_{3/2}
 - γ-band-like structure
 - Drop significantly in energy
- Brown level: intruder state
- ► Green States: breaking g_{9/2} neutron pair

proton $(\mathbf{f}_{5/2} \mathbf{p}_{3/2})_{1234} (\mathbf{f}_{5/2} \mathbf{f}_{5/2})_{24} (\mathbf{p}_{3/2} \mathbf{p}_{3/2})_{2}$

D. VERNEY et al.

PHYSICAL REVIEW C 87, 054307 (2013)

⁸⁰Ge

- N = 48, 2 neutron holes
 - Adds complexity
 - Purple: neutron states $-g_{9/2} p_{3/2}, g_{9/2} f_{5/2}, g_{9/2} p_{1/2}$
 - Negative parity
- ⁸⁰Ga β-decay parent: J=3⁻ and J=6⁻
- Yrast 2⁺, 4⁺ due to breaking the f_{5/2} proton pair
- Red levels: Two-particle states of f_{5/2} p_{3/2}
 - γ-band-like structure
 - Drop significantly in energy
- Brown level: intruder state
- Green States: breaking g_{9/2} neutron pair

^{78,80}Ge

- Triaxiality and shape coexistence in ^{72,74,76}Ge
 - Two triaxial shapes in ⁷²Ge

- Intruder 0+ state in ⁸⁰Ge
 - ► Two holes from N=50 shell
- ⁷⁸Ge four holes from N=50 shell

Journal of Physics: Conference Series 387 (2012) 012020

doi:10.1088/1742-6596/387/1/012020

Table 1. The measured [4] and calculated B(E2) values, given in units of $10^{-3}e^2b^2$. Two set of effective charges are employed: $e_{eff}^{\pi} = 1.5 \ e$, $e_{eff}^{\nu} = 0.5 \ e$ and $e_{eff}^{\pi} = 1.5 \ e$, $e_{eff}^{\nu} = 1.1 \ e$, shown separated "/".

Nucleus	Expt.	JUN45	jj44b	fpg
70 Ge	36(4)	24.8/47.5	33.7/67.7	55.5/99.5
72 Ge	40(3)	26.2/50.8	35.3/71.2	44.3/78.1
$^{74}\mathrm{Ge}$	60(3)	30.7/59.1	36.7/70.6	51.5/94.4
76 Ge	46(3)	31.3/56.9	34.8/63.9	53.6/93.7
78 Ge	44(3)	28.5/48.0	31.5/53.8	48.9/79.8
80 Ge	28(5)	19.2/30.1	22.9/34.8	33.3/47.5
82 Ge	25(5)	8.1/8.1	15.9/15.9	22.7/22.7