

Contribution ID: 188 Type: Oral

STRUCTURE AND REACTIONS OF N=7 ISOTONES: PARITY INVERSION AND TRANSFER CROSS SECTIONS

Tuesday, 14 May 2019 17:00 (20 minutes)

The properties of low-lying states in N=7 isotones have been studied theoretically, going from ¹⁰Li to ¹³C. To reproduce in detail the changes of structure in these nuclei going towards the neutron drip line represents a considerable challenge for many-body theories.

In particular, this concerns the inversion of parity between the ground and first excited state observed going towards the drip line, which is experimentally well established in 11 Be but is under discussion in the case of the unbound nucleus 10 Li, while the normal sequence is observed in 12 B and 13 C.

The effects of many-body renormalization processes are considered in detail, and transfer reactions are calculated, showing that the cross sections observed in recent $^9\text{Li}(d,p)^{10}\text{Li}$ one–neutron transfer experiments [1,2] are consistent with, or better, require the presence of a virtual 1/2+ state [3]. Furthermore, theoretical cross sections for reactions leading to low-lying resonant states in ^{11}Be are successfully compared to data [4].

- [1] H.B. Jeppesen et al, Phys. Lett. B, 642(2006)449
- [2] M. Cavallaro et al, Phys. Rev. Lett. 118 (2017) 012701
- [3] F. Barranco, G. Potel, R. A. Broglia, and E. Vigezzi, Phys. Rev. Lett. 119 (2017) 082501
- [4] F. Barranco, G. Potel, R. A. Broglia, and E. Vigezzi, arXiv:1812.01761

Primary author: Prof. BARRANCO, Francisco (Sevilla University)

Presenter: Prof. BARRANCO, Francisco (Sevilla University)Session Classification: Session X (Parallel Session)