Structural investigation of neutron deficient Pt isotopes: the case of ¹⁷⁸Pt

<u>C. Müller-Gatermann</u>, C. Fransen, T. Braunroth, A. Dewald, M. Hackstein, J. Jolie, J. Litzinger, F. Mammes, N. Saed-Samii, N. Warr, K.O. Zell

Institut für Kernphysik, Universität zu Köln, Cologne, Germany

R. Bark, Z. Buthelezi, T. Dinoko, S. Förtsch, P. Jones, E. Lawrie, M. Wiedeking, R. Neveling, J.F. Sharpey-Shafer, O. Shirinda, R. Smit iThemba LABS, Somerset West, South Africa

R. Newman

Stellenbosch University, South Africa

Supported by the DFG, Grant No. Fr 3276/1-1, De 1516/3-1

Motivation: rapid shape evolution in n-deficient nuclei in A=180 region

Evolution of the yrast bands in Pt and Hg isotopes

- → Level schemes of Pt isotopes: prolate gs conf. near midshell? → 176,178Pt at the edge of a shape transition?
- \rightarrow measure yrast B(E2) values!

Lifetime determination with the recoil distance Doppler-shift technique

Experiment on ¹⁷⁸Pt @ AFRODITE, iThemba LABS, South Africa

Target: ⁹⁸Mo, 0.9 mg/cm² Stopper: Au, 15 mg/cm²

Beam: ⁸⁴Kr, 375 MeV Beam current: 2.0 – 2.5 pnA Reaction: ⁹⁸Mo(⁸⁴Kr,4n)¹⁷⁸Pt

14 target – stopper distances from 8 μm – 7200 μm, each for 10 h

Recoil velocity: v = 4.24% * c = 12.7 μm/ps

Level lifetimes: Recoil distance Doppler-shift method Cologne plunger at AFRODITE 4 HPGe Clover detectors at 45° and 135° each

Experiment on ¹⁷⁸Pt @ AFRODITE, iThemba LABS, South Africa

Lifetime determination: 41⁺ in ¹⁷⁸Pt

Experimental results 178Pt

Level	E_v [keV]	τ [ps]	B(E2)	Q _t [eb]	10+ _	
	r		[W.u.]	L.		
2+	170.3	412 ± 30	143 ⁺¹¹ -10	6.53 ^{+0.26} -0.22	Ī.	483 I
4+	257.1	40.8 ± 2.4	259 ⁺¹⁶ -14	7.36 ^{+0.23} -0.21) o+	
6+	337.7	11.9 ± 1.1	245 ⁺²⁵ -21	6.81 ^{+0.35} -0.29	0'-	
8+	413.2	3.79 ± 0.50	289 ⁺⁴⁴ -34	7.24 ^{+0.55} -0.42		413
10+	483.0	1.84 ± 0.82	276 ⁺²²² -85	6.99 ^{+2.81} _{-1.08}	C+	
					<u> </u>	

 $τ(2_1^+)$ from fast timing: Li et al., PRC 90, 047302 (14) $τ(12_1^+)$ not measurable: unshifted comp. $12_1^+ → 10_1^+$ doublet with ¹⁹⁷Au Coulex γ-ray line from stopper.

```
Dracoulis et al., JPG 12, L97 (86): τ(4+)=54.1(46) ps
τ(6+)=15.7(12) ps
```

 \rightarrow only 1 HPGe detector + Nal as multiplicity filters

338

264

170

1+

2+

N+

Experimental details 180Pt

$$\tau(2_1^+) = 420 (20) \text{ ps}$$

 $\tau(4_1^+) = 37 (2) \text{ ps}$
 $\tau(6_1^+) = 7.7 (9) \text{ ps}$
 $\tau(8_1^+) = 3.1 (1) \text{ ps}$

 $\tau(2_1^+)$: fast timing, IKP Cologne 168Yb(16O,4n)180Pt @ 88 MeV $\tau(4_1^+) - \tau(8_1^+)$: JYFL Jyväskylä 98Mo(86Kr,4n)180Pt @ 380 MeV **C. Müller-Gatermann et al., PRC 97, 024336 (18)**

τ(8₁+): LNL Legnaro ¹⁵⁴Sm(³²S,6n)¹⁸⁰Pt @ 183 MeV **C. Müller-Gatermann et al., NIM A 920, 95 (19)**

Yrast B(E2) values n-deficient W – Os – Pt – Hg region

Yrast Q_t values 178,180Pt, 180,182Hg

^{180,182}Hg: Prolate intruder, weakly oblate deformed gs conf.

Prolate structure evolves into gs configuration in ^{178,180}Pt similar collectivity than intruder in ^{180,182}Hg

Structural evolution ^{176–180}Pt, ¹⁸⁰Hg: level schemes

Structural evolution ^{176–180}Pt: yrast Q_t values

- → ^{178,180}Pt: prolate gs config., ¹⁷⁸Pt: Q_t ~ 7 eb, ¹⁸⁰Pt: Q_t ~ 8 eb
- \rightarrow ¹⁷⁶Pt: prolate config. of states above 4₁+ from level scheme, 0₁+, 2₁+ weakly deformed?
- → not supported by $Q_t \sim 5$ eb from Dracoulis et al., JP G 12, L97 (86), γ "singles" experiment: unknown feeding?

Structure of 180Pt

Level scheme ¹⁸⁰Pt: comparison with IBM, GCM

C. Müller-Gatermann et al., PRC 97, 024336 (18)

Structural investigation ¹⁸⁰⁻¹⁹⁴Pt (IBM, HFB)

Mass Number K. Nomura, et al., PRC 83, 014309 (11) transition rotor-like to γ -soft \rightarrow from IBM PES, similar: HFB PES

Structural evolution 172–178Pt

"level scheme changes from quasi-vibrational to well deformed at low spins, similar to shape coexistence in light Hg.

Conclusion

- \rightarrow Determination of yrast B(E2) values from level lifetimes in ^{178,180}Pt in RDDS $\gamma\gamma$ coincidence experiments
- \rightarrow ¹⁷⁸Pt: first plunger experiment at iThemba LABS, South Africa
- → ^{178,180}Pt: similar rotor structure, but slightly decreasing collectivity in ¹⁷⁸Pt
- → hints for a structural change in ¹⁷⁶Pt: weakly deformed gs configuration, prolate intruder: Similar to n-deficient Hg isotopes
- \rightarrow Contradicting predictions (IBM-CM, HFB) for structural change 178Pt \rightarrow 172Pt: measure yrast B(E2) values in 174,176Pt!

