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Purpose of the Conference 
The IV International Conference on Nuclear Structure and Dynamics NSD2019 will be held in Venice at Centro 
Culturale Don Orione Artigianelli on May 13-17, 2019. The conference is a follow-up of the three previous 
conferences held first in 2009 in Dubrovnik (Croatia), continued in 2012 in Opatija (Croatia) and last in 2015 in 
Portoroz (Slovenia), and belongs to a series of conferences devoted to the most recent experimental and 
theoretical advances in the field of nuclear structure and reactions. The NSD2019 Conference will maintain this 
tradition, with the aim to provide a broad discussion forum that will promote exchange of ideas and 
collaboration among researchers with experimental, theoretical and phenomenological background. We 
encourage the attendance of graduate students and postdocs.  
 
Topics 

o Nuclear structure and reactions far from stability 
o Collective phenomena and symmetries 
o Dynamics and thermodynamics of light and heavy nuclei   
o Sub- and near-barrier reactions 
o Fusion and Fission dynamics  
o Ab initio calculations, cluster models and shell model 
o Nuclear energy density functionals 
o Nuclear astrophysics 
o Fundamental interactions 

 
Venue 
NSD2019 will be held at "Centro Culturale Don Orione Artigianelli" in Venice. It is located in Sestiere 
Dorsoduro, on the wide Calle (Rio Terà Foscarini) connecting Canal Grande to the quayside Zattere. In a few 
minutes you can reach the Peggy Guggenheim Collection, the Gallerie dell’Accademia and Piazza S. Marco. You 
can visit this page for directions. 
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Motivation



The aim of the EXL 
experiment is to 
study the structure 
of unstable exotic 
nuclei in light-ion 
scattering 
experiments at 
intermediate 
energies
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see Nuclear matter distribution of 
 
Ni56 

measured with EXL, M. Von Schmid (2015)

NEUTRON DENSITY DISTRIBUTIONS OF . . . PHYSICAL REVIEW C 82, 044611 (2010)

FIG. 1. Schematic view of the spectrometer “Grand Raiden” and
the focal plane detectors.

chamber were also used to check the beam condition after
each run. The uncertainty of the scattering angle was less than
±0.05◦.

Scattered protons were analyzed using the QSQDMD-
type high resolution magnetic spectrometer, “Grand Raiden”
(Q: quadrupole; S: sextupole; D: dipole; M: multipole) [29].
The trajectories of the scattered protons were determined with
two sets (X, U and X′, U′) of vertical-type drift chambers
(VDC’s), placed at the focal plane of Grand Raiden. Two
1-cm-thick plastic scintillators (PS1 and PS2) right behind
the VDC’s were used to generate the start signal of the data
acquisition. A 1-cm-thick aluminum plate was placed between
the two plastic scintillators to prevent δ electrons knocked out
by scattered particles at PS1 from entering PS2. A schematic
view of Grand Raiden and the focal-plane detectors is shown
in Fig. 1.

Protons were identified by using the information about both
the time of flight and the energy loss ("E) in PS1 and PS2. In
the previous analysis only the information about "E was used
for particle identification [20,21]. The proton peak in the "E
spectrum has a tail structure and the proton events in the tail
were cutoff together with the deuteron and triton events. This
causes the reduction of the yields, which accounts for more
than a few percent of the total and is not negligible for the
precise measurement of the cross sections.

Moreover, to reconstruct the trajectories of scattered parti-
cles from the VDC data, we applied the multicluster treatment
reported in Ref. [30]. This treatment is effective for avoiding
the severe reduction of the yields and efficiencies of a VDC
especially at the angles where the signal-to-noise ratios are
small. The energy resolution during the measurement was
better than 200 keV in full width at half maximum. A typical
position spectrum of 208Pb at the focal plane is shown in Fig. 2.

The absolute charge-collection efficiency of the SCFC and
the absolute trigger efficiency of PS1 and PS2 for protons at
295 MeV were recently measured in a separate experiment
[31]. A well-calibrated Faraday cup and triple coincidence of
three consecutive scintillators were arranged as references to
these efficiencies. In the present analysis, these efficiencies are
taken into account.
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FIG. 2. (Color online) Typical position spectrum at the focal plane
for 208Pb at a laboratory angle of 36.0◦.

As a result of these improvements, the new data set of cross
sections for 58Ni is about 10% larger than the previous set used
in Refs. [20,21].

Data sets of angular distributions of differential cross
sections and analyzing powers for polarized proton elastic
scattering from 58Ni and 204,206,208Pb were obtained over an
angular range of 7◦ < θ < 50◦, corresponding to a range of
momentum transfer from 0.55 to 3.5 fm− 1.

III. RESULTS AND DISCUSSION

A. Relativistic impulse approximation

The details of our approach are described in Refs. [20,21]
and only a brief description of the method to extract the neutron
density distributions is given in this article.

The analysis method is based on the framework of the
RIA using the relativistic Love-Franey (RLF) NN interaction
proposed by Murdock and Horowitz (MH model) [32]. In the
MH model the nucleon-nucleus optical potential is calculated
by folding the RLF NN interaction with the nucleon vector and
scalar density of the target nucleus. Figure 3 shows the obtained
experimental data of cross sections and analyzing powers for
elastic scattering from 204,206,208Pb and 58Ni compared with
two kinds of model calculations. The solid and dashed lines
are the RIA calculations [32] with Dirac-Hartree (DH) [34]
densities of the target nuclei and the calculations using the
recent global Dirac optical model by Cooper, Hama, and Clark
[33], respectively. Although both calculations well reproduce
the analyzing powers, only the global Dirac optical model
is in good agreement with the cross sections. The MH model
poorly reproduces the angular distributions of the cross section
especially at backward angles. This is because neither the
RLF interaction nor the nucleon densities used in the MH
model are realistic. However, even though a realistic nucleon
density of 58Ni, as mentioned later, was used in place of the DH
density for the MH calculation (dash-dotted lines in Fig. 3), the

044611-3

Proton elastic scattering from tin isotopes at 295 MeV and  systematic 
change of neutron density distributions, PRC77 (2008) 024317 

Neutron density distributions of 204,206,208Pb deduced via proton 
elastic scattering at Ep = 295 MeV, PRC82 (2010) 044611 

Experimental matter densities

It is important to constrain and to 
test the most recent chiral potentials 
• convergence 
• accuracy 
• predictive power

Theoretical point of view
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Figure 1.2.: Schematic view of the EXL detection systems. Left : Setup built into the
NESR storage ring; Right : Target-recoil detector surrounding the gas-jet
target. (adapted from [1])

Array (ELENA) is intended to detect slow neutrons. In the forward direction, a de-
tector for fast ejectiles, i. e. protons, neutrons and light clusters like ↵-particles, is
planned to be installed. Eventually, an in-ring heavy-ion spectrometer is intended
for the detection of beam-like ejectiles. A schematic overview of the whole system
is showed in figure 1.2.

Technically, the most challenging part of the project is certainly the recoil de-
tector and especially ESPA. First and foremost, the ultra-high vacuum (UHV) con-
ditions in the storage ring demand the exclusive use of low-outgassing materials
which withstand the bake-out of the ring at temperatures of at least 150 �C. At
the same time, the low energy threshold mandatory for the measurement of recoils
at low momentum transfer excludes the use of vacuum windows as they would
prevent the detection of low-energy recoils.

Measuring the size of a nucleus
As outlined, one of the physics interests of EXL is the measurement of nuclear

matter distributions and matter radii. The method of choice for this will be elas-
tic proton scattering at intermediate energies which has proven to be an excellent
tool for the study of matter distributions of stable nuclei [2, 3]. More recently,
the method was also applied to light exotic nuclei in inverse kinematics using
an active target [4, 5, 6]. By taking into account the charge distributions mea-
sured in electron scattering experiments it is also possible to extract the neutron

3

Antiproton physics
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Method
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Nuclear reaction theory 
relies on reducing the 

many-body problem to a 
problem with few degrees 

of freedom:   
optical potentials.
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Model



OPTICAL POTENTIALS FROM CHIRAL FORCES PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA

 7

0 i

0

j

i

0 i

j

k

+
.
.
.

Single Scattering

Double Scattering

Triple Scattering

2 Active

3 Active

4 Active
+

+

Nucleons

Nucleons

Nucleons
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The general goal when solving the scattering problem of a 
nucleon from a nucleus is to solve the corresponding Lippmann-
Schwinger equation for the many-body transition amplitude T 

Phys. Rev. C 93, 034619 (2016)
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 11Matter densities 
Typel and Wolter , Nuc. Phys. A 656 (1999) 331

FIG. 4. Charge density distribution for 16O. The experimental curve is from [De87]. The

Dirac–Hartree calculations for parameter set L2 yield the long-dashed curve, while those from set
NLC yield the dot-dashed curve.

energy/nucleon (e0 = −15.75 MeV), and bulk symmetry energy (35 MeV) are reproduced.6

The empirical equilibrium density is determined here from the density in the interior of
208Pb and corresponds to k0

F = 1.30 fm−1. We also fit the empirical rms charge radius of
40Ca (rrms = 3.482 fm), which is determined primarily by ms. This procedure produces the
parameters in the row labeled L2 in Table I, which are taken from [Ho81]. This parameter
set yields the same values for C2

s and C2
v as in Eq. (2.21), so that M∗/M = 0.541 and

K ≈ 545 MeV at equilibrium.
Once the parameters have been specified, the properties of all closed-shell nuclei are

determined in this approximation. For example, Figs. 4 through 6 show the Dirac–Hartree
charge densities of 16O, 40Ca, and 208Pb compared with the empirical distributions deter-
mined from electron scattering [De87]. The empirical proton charge form factor has been
folded with the calculated “point proton” density to determine the charge density.

In Fig. 7, the predicted energy levels in 208Pb are compared with experimental values
derived from neighboring nuclei [Bo69,Ra79]. The relativistic calculations clearly reveal
a shell structure; the level orderings and major shell closures of the nuclear shell model
are correctly reproduced. This successful result arises from the spin-orbit interaction that
occurs naturally when a Dirac particle moves in large, spatially varying classical scalar and

6The number of significant digits in the empirical input values is not intended to indicate how
accurately these quantities are known. We are merely reporting the precise values used in [Ho81]

to determine the model parameters.
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334 S. Typel, H.H. Walter/Nuclear Physics A 656 (1999) 331-364 

(1) 
depends on the spinor (P = $i ), scalar (4) and vector fields (A?), A:), A:)), 

( > 
respectively, with the field tensors 

F::“’ =&A?’ - &,A;‘, 

F(O) = apAp) _ &A(Q) 
PL” P ’ 

F(r) = &Al” - &A(Y). P’” P (2) 

As usual, we assume minimal coupling of the baryons to the mesons and the photons. 
The parameters of the model are the masses of the baryon m and the mesons m,,, m,, 
mp, the electromagnetic coupling constant e, and the baryon-meson couplings r,, To, 
r(,, which are assumed to be dependent on a functional of the baryon field. We assume 
a dependence of the couplings on the vector density 

e = m with j, = qy,P. (3) 

The field equations for the mesons and the photons are obtained in the standard way 
from the Euler-Lagrange equations [ 331. The Dirac equation for the baryons reads 

[yP (idp - Sp) - (M - X)] P = 0 (4) 

with the scalar self-energy 

,c = r,+ 

and the vector self-energy 

(5) 

The latter contains, besides the usual contributions, a “rearrangement” term 

(6) 

(7) 

In principle a scalar isovector (or &)meson could also be considered in the model. 
Then the scalar self-energies of protons and neutrons and therefore their effective masses 
m* = m - ,C would be different leading to shifts of proton and neutron single particle 
states against each other. However, this shift can be partially compensated by a change 
in the e-meson coupling. We found no substantial improvement in our calculations 
including a &meson, thus we neglect it in order to reduce the degrees of freedom. Effects 
of the &meson in RMFI of asymmetric matter are discussed, e.g., in Refs. [ 54,601. 

-. rvpel, H.H. Walter/Nuclear Physics A 656 (1999) 331-364 3 
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Fig. I, Density dependence of the normalized couplings of the w-meson (top) and w-meson (bottom) in the 
density-dependent parametrization (solid line) compared to results of Dirac-Brueckner calculations (circles, 
Ref. 126 1. diamonds: Ref. 127 1. Bonn B potential). 

the “rearrangement” contributions become finite for zero density and do not diverge as in 
some other parametrizations. With these five restrictions there are only three independent 
parameters in our tit for the density dependence of the (T- and w-meson couplings. DB 
calculations for asymmetric nuclear matter indicate a strong density dependence of the 
e-meson coupling [54] with the couplings becoming very small at high densities. For 
simplicity we choose an exponential dependence 

I’!,(e) = r(,(esar) exp [-a,,(-~ - 1 I] (40) 

with only one parameter n,. In principle one can also think about a dependence of’ 
the couplings on the isospin density or the proton-to-neutron ratio but DB calculations 
of asymmetric nuclear matter show no strong dependence of the effective coupling 
constants on these quantities [54]. We also did some trial calculations within our model 
using these additional dependencies but found no substantial improvement of the results. 

In addition to the parameters for the density dependence the masses and coupling 
constants at saturation density enter our model. The nuclear mass is assumed to be 

DDME1 parametrization 
T. Nikšić, D. Vretenar, P. Finelli and P. Ring 

Phys. Rev. C 66 (2002) 024306

Density-dependent couplings
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NN potential
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Chiral potentials: why?

1. QCD symmetries are 
consistently respected

2. Systematic expansion 
(order by order you know 
exactly the terms to be 
included) 

3. Theoretical errors

4.Two- and three- body 
forces belong to the same 
framework

Phenomen. potentialsChiral potentials

1. QCD symmetries are not 
respected

2. Expansion determined by 
phenomenology (add 
whatever you need). A lot of 
freedom 

3. Errors can’t be estimated

4. Two- and three- body 
forces are not related one to 
each other
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Nucleon-Nucleon Chiral potentials
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Figure 1. (Color online) Real (left panel) and Imaginary (right
panel) parts of pp and pn Wolfenstein amplitudes (a and c)
as functions of the center-of-mass NN angle �. All the am-
plitudes are computed at 100 MeV using the EM potentials
[39–41, 43] with a LS cuto↵ ranging between 450 and 600
MeV. Data (black squares) are taken from Ref. [62].
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Figure 2. (Color online) The same as in Fig. 1 using EGM
potentials [44] with a LS cuto↵ ranging between 450 and 600
MeV. In two cases (⇤ = 450 and 600 MeV) we show uncer-
tainty bands produced by changing ⇤̃ according to Eq. (91).
Data (black squares) are taken from Ref. [62].
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Figure 3. (Color online) The same as in Fig. 1 but for an
energy of 200 MeV. Data (black squares) are taken from
Ref. [62].
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study variations of the cuto↵ ⇤̃ that regulates the 2PE
contribution. In fact, in the latter approach one can
choose between the following cuto↵ combinations:

{⇤, ⇤̃} = {450, 500}, {450, 700}, {550, 600},
{600, 600}, {600, 700} . (91)

In the following figures all the results are labelled by
an acronym (to distinguish the authors) followed by the
value of the LS cuto↵ (⇤). In the EGM case, for ⇤ = 450
and 600 MeV we plot bands that show how calculations
can change respect to variations of the SFR cuto↵ ⇤̃.
In Fig. 1 the theoretical results for the real and imag-
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is the Sommerfeld parameter, µ is the reduced mass
of Eq. (67), and ↵ is the fine structure constant. The
Coulomb phase shifts �L are given by

�L = arg�
⇥
L+ 1 + i⌘(k0)

⇤
. (76)

The partial wave scattering amplitudes F̄
±
L are ob-

tained from the solution of the Coulomb distorted T̄ ma-
trix

T̄ (k0
,k;E) = Ū(k0

,k;!) +

Z
d
3
p
Ū(k0

,p;!) T̄ (p,k;E)

E(k0)� E(p) + i✏
,

(77)
where

Ū(k0
,k;!) = hk0|Ū(!)|ki = h (+)

c (k0)|Û(!)| (+)
c (k)i ,

(78)

and  (+)
c (k) is the Coulomb distorted wave function.

In order to solve Eq. (77), we need to be able to gen-
erate the momentum space matrix element Ū(k0

,k;!)
as given in Eq. (78). We begin with the potential
Û(k0

,k;!), discussed in Section IIA, and we transform
it into the coordinate space through the double Fourier
transform

Û(r0, r;!) =

Z
d
3
k
0
d
3
k hr0|k0i Û(k0

,k;!) hk|ri (79)

and then we construct the matrix element of Eq. (78) by
folding Û(r0, r;!) with coordinate space Coulomb wave
functions

Ū(k0
,k;!) =

Z
d
3
r
0
d
3
r h (+)

c (k0)|r0i

⇥ Û(r0, r;!) hr| (+)
c (k)i .

(80)

In the partial wave representation, Eq. (79) for the cen-
tral and spin-orbit parts becomes

Û
a
L(r

0
, r;!) =

4

⇡2

Z 1

0
dk

0
k
0 2

⇥
Z 1

0
dk k

2
jL(k

0
r
0)Ûa

L(k
0
, k;!)jL(kr) ,

(81)

where jL(kr) are the spherical Bessel functions. Simi-
larly, Eq. (80) becomes

Ū
a
L(k

0
, k;!) =

1

k0k

Z 1

0
dr

0
r
0

⇥
Z 1

0
dr rFL(⌘, k

0
r
0)Ûa

L(r
0
, r;!)FL(⌘, kr) ,

(82)

where FL is the regular Coulomb function. The poten-
tial Ū(k0

,k;!) can be expanded in partial waves as in
Eq. (54)

Ū(k0
,k;!) =

2

⇡

X

JLM

Y
L 1

2
JM (k̂0) ŪLJ(k

0
, k;!)Y

L 1
2 †

JM (k̂) ,

(83)

where

ŪLJ(k
0
, k;!) = Ū

c
L(k

0
, k;!) + CLJ V̄

ls
L (k0, k;!) , (84)

and

CLJ =
1

2


J(J + 1)� L(L+ 1)� 3

4

�
,

V̄
ls
L (k0, k;!) =

k
0
k

2L+ 1

⇥
Ū

ls
L+1(k

0
, k;!)� Ū

ls
L�1(k

0
, k;!)

⇤
,

(85)

Likewise, we can expand the T̄ matrix in Eq. (77) as

T̄ (k0
,k;E) =

2

⇡

X

JLM

Y
L 1

2
JM (k̂0) T̄LJ(k

0
, k;E)Y

L 1
2 †

JM (k̂) ,

(86)
where the partial wave components are

T̄LJ(k
0
, k;E) = ŪLJ(k

0
, k;!)

+
2

⇡

Z 1

0
dp p

2 ŪLJ(k0, p;!) T̄LJ(p, k;E)

E(k0)� E(p) + i✏
.

(87)

The partial wave scattering amplitudes F̄
±
L entering

Eqs. (72) and (73) are given by

F̄LJ(k0) = � A

A� 1
4⇡2

µ(k0)T̄LJ(k0, k0;E) . (88)

III. THE NN AMPLITUDES

In this section we present and discuss the theoretical
results for the pp and pn Wolfenstein amplitudes which
are used to compute the central a (45) and the spin-
orbit part c (46) of the three-dimensional NN t matrix.
Calculations are performed using two di↵erent versions
of the chiral potential at fourth order (N3LO) based on
the works of Entem and Machleidt [39–41, 43] and Epel-
baum et al. [44]. The performance of our code has been
tested against the CD-Bonn potential [60] reproducing
well known results [63, 64] in order to check its numeri-
cal correctness.
Entem and Machleidt (EM), who first presented a chi-

ral potential at the fourth order, treat divergent terms
in the two-pion exchange (2PE) contributions with di-
mensional regularization (DR), while Epelbaum, Glöckle,
and Meißner (EGM) employ a spectral function regular-
ization (SFR). In both cases the goal is to cut out the
short-range part of the 2PE contribution that, as shown
in Ref. [40], has unphysically strong attraction, particu-
larly at N2LO (for a comprehensive discussion about dif-
ferent regularization schemes we refer the reader to Sect.
3.2.1 of Ref. [44]). As a usual procedure, the nucleon-
nucleon potential entering the LS equation is multiplied
by a regulator function f

⇤

V (k,k0) ! V (k,k0)f⇤(k, k0) (89)

Entem, Machleidt, Nosyk (N4LO) Epelbaum, Krebs, Meissner (N4LO)

spectral 
function 
subtraction
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coordinate space. As stated in Ref. [7], this particular choice of a coordinate space regulator

makes the adoption of SFR for the treatment of pion exchange contributions unnecessary.

This choice would also allow one to avoid any fine-tuning of the low-energy constants ci and

di determined from pion-nucleon scattering. Such regularization has been initially adopted

by Gezerlis et al. in the construction of local chiral NN potentials up to N2LO [33, 34].

1. The EKM approach

The strategy followed in Ref. [6, 7] consists in a regularization for the long-range contri-

butions such as

Vlong�range(r) ! V reg

long�range
(r) = Vlong�range(r)f

⇣ r

R

⌘
, (6)

where f is a regulator function defined as

f
⇣ r

R

⌘
=

✓
1� exp

✓
� r2

R2

◆◆n

, (7)

and a conventional momentum space regularization, see Eq. (5), for the contact terms with

⇤ = 2R�1 and m = 2. As explained in Ref. [7], it is necessary to choose n � 4 in order

to have the correct behaviours of the 2PE contributions. To guarantee more stable results

from a numerical point of view, n = 6 is the adopted value. Five available choices of R are

available: 0.8, 0.9, 1.0, 1.1, and 1.2 fm, leading to five potentials with di↵erent �2/datum.

As shown in Tab. 3 of Ref. [7], they are almost equivalent for energies below 200 MeV, with

larger discrepancies for higher energies, in particular for the softest (1.2 fm) and the hardest

cases (0.8 fm).

2. The EMN approach

On the other hand, Machleidt et al. [8, 9] pursued a slightly more conventional approach

to develop a NN potential at N4LO. They employed a SFR with a cuto↵ ⇤̃ = 700 MeV

(while, at lower orders, ⇤̃ = 650 MeV) in order to regularize the loop contributions. The

long-range parts are constrained by a recent Roy-Steiner (RS) analysis by Hoferichter et al.

[35, 36]. With RS equations the LECs can be extracted from the subthreshold point in ⇡N

scattering data with extremely low uncertainties (see Tab. II of Ref. [9] for more details).
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Figure 1. (Color online) Real (left panel) and Imaginary (right
panel) parts of pp and pn Wolfenstein amplitudes (a and c)
as functions of the center-of-mass NN angle �. All the am-
plitudes are computed at 100 MeV using the EM potentials
[39–41, 43] with a LS cuto↵ ranging between 450 and 600
MeV. Data (black squares) are taken from Ref. [62].
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Figure 2. (Color online) The same as in Fig. 1 using EGM
potentials [44] with a LS cuto↵ ranging between 450 and 600
MeV. In two cases (⇤ = 450 and 600 MeV) we show uncer-
tainty bands produced by changing ⇤̃ according to Eq. (91).
Data (black squares) are taken from Ref. [62].

where

f
⇤ = exp

�
�(k0/⇤)2n � (k/⇤)2n

�
with n = 2, 3 .

(90)
While Entem and Machleidt present results for three

choices of the cuto↵ necessary to regulate the high-
momentum components in the LS equation (⇤ = 450,
500, and 600 MeV), Epelbaum et al. [44] allow also to
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Figure 3. (Color online) The same as in Fig. 1 but for an
energy of 200 MeV. Data (black squares) are taken from
Ref. [62].
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Figure 4. (Color online) The same as is Fig. 2 but for an
energy of 200 MeV. Data (black squares) are taken from
Ref. [62].

study variations of the cuto↵ ⇤̃ that regulates the 2PE
contribution. In fact, in the latter approach one can
choose between the following cuto↵ combinations:

{⇤, ⇤̃} = {450, 500}, {450, 700}, {550, 600},
{600, 600}, {600, 700} . (91)

In the following figures all the results are labelled by
an acronym (to distinguish the authors) followed by the
value of the LS cuto↵ (⇤). In the EGM case, for ⇤ = 450
and 600 MeV we plot bands that show how calculations
can change respect to variations of the SFR cuto↵ ⇤̃.
In Fig. 1 the theoretical results for the real and imag-
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is the Sommerfeld parameter, µ is the reduced mass
of Eq. (67), and ↵ is the fine structure constant. The
Coulomb phase shifts �L are given by

�L = arg�
⇥
L+ 1 + i⌘(k0)

⇤
. (76)

The partial wave scattering amplitudes F̄
±
L are ob-

tained from the solution of the Coulomb distorted T̄ ma-
trix

T̄ (k0
,k;E) = Ū(k0

,k;!) +

Z
d
3
p
Ū(k0

,p;!) T̄ (p,k;E)

E(k0)� E(p) + i✏
,

(77)
where

Ū(k0
,k;!) = hk0|Ū(!)|ki = h (+)

c (k0)|Û(!)| (+)
c (k)i ,

(78)

and  (+)
c (k) is the Coulomb distorted wave function.

In order to solve Eq. (77), we need to be able to gen-
erate the momentum space matrix element Ū(k0

,k;!)
as given in Eq. (78). We begin with the potential
Û(k0

,k;!), discussed in Section IIA, and we transform
it into the coordinate space through the double Fourier
transform

Û(r0, r;!) =

Z
d
3
k
0
d
3
k hr0|k0i Û(k0

,k;!) hk|ri (79)

and then we construct the matrix element of Eq. (78) by
folding Û(r0, r;!) with coordinate space Coulomb wave
functions

Ū(k0
,k;!) =

Z
d
3
r
0
d
3
r h (+)

c (k0)|r0i

⇥ Û(r0, r;!) hr| (+)
c (k)i .

(80)

In the partial wave representation, Eq. (79) for the cen-
tral and spin-orbit parts becomes

Û
a
L(r

0
, r;!) =

4

⇡2

Z 1

0
dk

0
k
0 2

⇥
Z 1

0
dk k

2
jL(k

0
r
0)Ûa

L(k
0
, k;!)jL(kr) ,

(81)

where jL(kr) are the spherical Bessel functions. Simi-
larly, Eq. (80) becomes

Ū
a
L(k

0
, k;!) =

1

k0k

Z 1

0
dr

0
r
0

⇥
Z 1

0
dr rFL(⌘, k

0
r
0)Ûa

L(r
0
, r;!)FL(⌘, kr) ,

(82)

where FL is the regular Coulomb function. The poten-
tial Ū(k0

,k;!) can be expanded in partial waves as in
Eq. (54)

Ū(k0
,k;!) =

2

⇡

X

JLM

Y
L 1

2
JM (k̂0) ŪLJ(k

0
, k;!)Y

L 1
2 †

JM (k̂) ,

(83)

where

ŪLJ(k
0
, k;!) = Ū

c
L(k

0
, k;!) + CLJ V̄

ls
L (k0, k;!) , (84)

and

CLJ =
1

2


J(J + 1)� L(L+ 1)� 3

4

�
,

V̄
ls
L (k0, k;!) =

k
0
k

2L+ 1

⇥
Ū

ls
L+1(k

0
, k;!)� Ū

ls
L�1(k

0
, k;!)

⇤
,

(85)

Likewise, we can expand the T̄ matrix in Eq. (77) as

T̄ (k0
,k;E) =

2

⇡

X

JLM

Y
L 1

2
JM (k̂0) T̄LJ(k

0
, k;E)Y

L 1
2 †

JM (k̂) ,

(86)
where the partial wave components are

T̄LJ(k
0
, k;E) = ŪLJ(k

0
, k;!)

+
2

⇡

Z 1

0
dp p

2 ŪLJ(k0, p;!) T̄LJ(p, k;E)

E(k0)� E(p) + i✏
.

(87)

The partial wave scattering amplitudes F̄
±
L entering

Eqs. (72) and (73) are given by

F̄LJ(k0) = � A

A� 1
4⇡2

µ(k0)T̄LJ(k0, k0;E) . (88)

III. THE NN AMPLITUDES

In this section we present and discuss the theoretical
results for the pp and pn Wolfenstein amplitudes which
are used to compute the central a (45) and the spin-
orbit part c (46) of the three-dimensional NN t matrix.
Calculations are performed using two di↵erent versions
of the chiral potential at fourth order (N3LO) based on
the works of Entem and Machleidt [39–41, 43] and Epel-
baum et al. [44]. The performance of our code has been
tested against the CD-Bonn potential [60] reproducing
well known results [63, 64] in order to check its numeri-
cal correctness.
Entem and Machleidt (EM), who first presented a chi-

ral potential at the fourth order, treat divergent terms
in the two-pion exchange (2PE) contributions with di-
mensional regularization (DR), while Epelbaum, Glöckle,
and Meißner (EGM) employ a spectral function regular-
ization (SFR). In both cases the goal is to cut out the
short-range part of the 2PE contribution that, as shown
in Ref. [40], has unphysically strong attraction, particu-
larly at N2LO (for a comprehensive discussion about dif-
ferent regularization schemes we refer the reader to Sect.
3.2.1 of Ref. [44]). As a usual procedure, the nucleon-
nucleon potential entering the LS equation is multiplied
by a regulator function f

⇤

V (k,k0) ! V (k,k0)f⇤(k, k0) (89)
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
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Q3 ⇥
���XNLO(p)�XN

2
LO(p)

���,

Q2 ⇥
���XN

2
LO(p)�XN

3
LO(p)

���,

Q⇥
���XN

3
LO(p)�XN

4
LO(p)

���
◆
.

Here, Q is the expansion parameter given by

Q = max

✓
p

⇤b
,
M⇡

⇤b

◆
. (4)

For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
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and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

R = 0.9 fm NLO N2LO N3LO N4LO

Good convergence of chiral expansion

Excellent agreement with NPWA data

Error bands are consistent with each other            strong support of chiral uncertainty estimation 

Epelbaum, HK, Meißner, arXiv: 1412.4623

New renormalisation technique in the coordinate space 
with the cutoff R being chosen in the range of R = 0.8 . . . 1.2 fm.  
For contact interactions, they use a non- local Gaussian  
regulator in momentum space with the cutoff Λ = 2R-1 

3

TABLE II: �2/datum for the description of the Nijmegen np
and pp phase shifts [21] at di↵erent orders in the chiral ex-
pansion for the cuto↵ R = 0.9 fm. Only those channels are in-
cluded which have been used in the N3LO/N4LO fits, namely
the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts
0–100 360 31 4.5 0.7 0.3
0–200 480 63 21 0.7 0.3

proton-proton phase shifts
0–100 5750 102 15 0.8 0.3
0–200 9150 560 130 0.7 0.6

function

f
⇣ r

R

⌘
=


1� exp

✓
� r2

R2

◆�6
, (1)

with the cuto↵ R being chosen in the range of R =
0.8 . . . 1.2 fm. For contact interactions, we use a non-
local Gaussian regulator in momentum space with the
cuto↵ ⇤ = 2R�1, see [1] for more details. We also adopt
the same treatment of electromagnetic e↵ects and rela-
tivistic corrections and employ the same fitting strategy
to determine the values of the LECs accompanying con-
tact interactions as done in [1]. In particular, we use np
and pp phase shifts and mixing angles of the NPWA as
input in our fits and define their error via

�X = max
⇣
�NPWA

X , |�NijmI

X � �NPWA

X |, (2)

|�NijmII

X � �NPWA

X |, |�Reid93

X � �NPWA

X |
⌘
,

where �X denotes a given phase shift (or mixing angle)
in the channel X, �NPWA

X is the corresponding statistical

error of the NPWA [21], while �NijmI

X , �NijmI

X and �Reid93

X
denote the results based on the Nijmegen I, II and Reid93
NN potentials of Ref. [28] which can be regarded as al-
ternative PWA. While �2/datum for the description of
the Nijmegen phase shifts calculated using the errors �X

defined above does, clearly, not allow for statistical inter-
pretation, see Ref. [1] for more details, it provides a useful
tool to quantify the accuracy of the fits.

For all considered values of the cuto↵, namely R = 0.8,
0.9, 1.0, 1.1 and 1.2 fm, the resulting LECs are found to
be natural and comparable in size with their N3LO val-
ues given in Ref. [1]. We found that the inclusion of the
fifth-order TPEP leads to a substantial improvement in
the description of np and pp phase shifts (for hard cuto↵
choices). As an example, we show in table II the result-
ing �2/datum for the description of the Nijmegen np and
pp phase shifts using the cuto↵ R = 0.9 fm, which was
found in Ref. [1] to yield most accurate results for NN
observables. Notice that the additional IB N4LO con-

TABLE III: Deuteron binding energy Bd (in MeV), asymp-
totic S state normalization AS (in fm�1/2) , asymptotic D/S
state ratio ⌘, radius rd (in fm) and quadrupole moment Q
(in fm2) at various orders in the chiral expansion based on
the cuto↵ R = 0.9 fm in comparison with empirical infor-
mation. Also shown is the D-state probability PD (in %).
Notice that rd and Q are calculated without taking into ac-
count meson-exchange current contributions and relativistic
corrections. The star indicates an input quantity. References
to experimental data can be found in Ref. [1].

LO NLO N2LO N3LO N4LO Empirical

Bd 2.0235 2.1987 2.2311 2.2246? 2.2246? 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
⌘ 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29

tact term a↵ects only np results. Switching it o↵ leads
to �2/datum = 0.5 for the description of the np phase
shifts in both energy bins. Further, the residual cuto↵ de-
pendence of the phase shifts appears, as expected, to be
very similar at N4LO and N3LO. Also the error plots at
N4LO reveal a similar behavior to those at N3LO shown
in Fig. 5 of that work, so that the estimation of the break-
down scale of ⇤b = 600 MeV for R = 0.8 . . . 1.0 fm made
in the N3LO analysis of Ref. [1] remains valid at N4LO.

For the deuteron properties, the N4LO predictions are
very close to those at N3LO (except for PD which is
not observable), see table III, indicating a good conver-
gence of the chiral expansion. This feature holds true
for all choices of the cuto↵ R. For rd and Q, the N4LO
predictions are in the range of rd = 1.970 . . . 1.981 fm
and Q = 0.270 . . . 0.281 fm2 for the cuto↵ variation of
R = 0.8 . . . 1.2 fm. Taking into account the estimated
size of the relativistic corrections and long-range meson-
exchange current contributions, the observed spread in
the values of rd and Q is consistent with the estimated
size of the corresponding short-range NN currents, see
Ref. [1] and references therein.

We now address the question of the theoretical uncer-
tainty of our calculations due to the truncation of the
chiral expansion. To this aim, we employ the approach
proposed in Ref. [1] which is based on estimating the
size of neglected higher-order contributions and does not
rely on a cuto↵ variation. Specifically, the uncertainty
�XN

4
LO(p) of a N4LO prediction XN

4
LO(p) for an ob-

servable X(p), with p referring to the center of mass mo-
mentum, is estimated via

�XN
4
LO(p) = max

✓
Q6 ⇥

���XLO(p)
���, (3)

Q4 ⇥
���XLO(p)�XNLO(p)

���,

 16

Phys. Rev. Lett. 115, 122301 (2015), Eur. Phys. J. A51, 53 (2015)
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Figure 2. Real and imaginary parts of various N̄N phase shifts at N3LO for cutoffs R = 0.7–1.2 fm.
The filled circles represent the solution of the p̄p PWA [32].

– 13 –

Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory  
Ling-Yun Dai, Johann Haidenbauer and Ulf-G. Meißner JHEP07(2017)078

Real and imaginary parts of various NN phase shifts at N3LO for cutoffs R = 0.7–1.2 fm 
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Figure 2. (Color online) The same as in Fig. 1 for 40,42,44,48Ca isotopes at 200 MeV. Experimental

data from Refs. [45, 46].
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60Ni at E = 178 MeV, and 62Ni at E = 156 MeV. Experimental data from Refs. [45, 46].
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KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)
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Figure 6. (Color online) The same as in Fig. 1 for 16O and 40,42,44,48Ca at E = 318 MeV and 58Ni

at E = 333 MeV. Experimental data from Refs. [45, 46].
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KD: A. J. Koning and J. P. Delaroche,  
Nucl. Phys. A713, 231 (2003)
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Figure 7. (Color online) The same as in Fig. 1 for 56Ni at E = 400 MeV.
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Figure 7.1.: Di�erential cross section for 58Ni(p,p) measured in this experiment
(green) compared to a measurement by Sakaguchi et al. (black ) [10].

Cross section for p-58Ni scattering
A recent measurement of the differential cross section for elastic proton scatter-

ing on 58Ni in normal kinematics was published by Sakaguchi et al. in [10]. The
measurement was performed at the Research Center for Nuclear Physics (RCNP)
in Osaka, Japan. A 400 MeV proton beam impinged on a solid 58Ni target and
the scattered protons were detected with the Grand Raiden spectrometer. In the
58Ni experiment of this work, the equivalent proton energy for normal kinematics
would be 403 MeV which allows a direct comparison of the cross sections measured
in both experiments. In figure 7.1 the cross section for 58Ni with 1 mm slit is com-
pared to a subset of the data from [10]. In order to estimate the difference between
both cross sections better, the ratio between the two is evaluated in figure 7.2. For
this, it was necessary to interpolate linearly between the data points of this work’s
cross sections. Besides an offset factor of about 0.65 (1 mm slit aperture) and
0.71 (without slit aperture), the cross sections measured in this experiment are in
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Nuclear matter
distribution of 56Ni
measured with EXL
Kerndichteverteilung von 56Ni gemessen mit EXL
Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung
des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Mirko von Schmid M.Sc. aus Fulda
2015 — Darmstadt — D 17

Fachbereich Physik
Institut für Kernphysik
AG Kröll
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Basic ingredients 

• (Anti)nucleon-nucleon scattering matrix t αN 

• Non-local nuclear densities 

     The matrix elements between a general initial 
     and final state are obtained from the NCSM 
     PRC 97, 034619 (2018)
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1max += NN

Projectiles

NCSM

Antiproton

• Target density 
         NN - N4LO500   Entem, Machleidt, Nosyk, PRC 96 024004 
(2017) 
      + 3N -  N2LO         Navratil, Few-Body Syst. 41 117 (2007) 

• Scattering matrix 
         – N3LO        Dai, Haidenbauer, Meißner, JHEP 2017, 78 (2017) 

➢ Local regulator for the long range part: R = 0.9 fm 

➢ Non-local regulator for the contact terms: Λ = 2 R-1 

➢ The interaction is connected to the NN one through the 
G-parity in an unambiguous way

In collaboration with P. Navratil (TRIUMF), to appear soon
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 32Antiproton

Experimental data 
are from the LEAR 

collaboration at CERN

Local: factorized optical potential
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In collaboration with P. Navratil (TRIUMF), to appear soon
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Experimental data 
are from the LEAR 

collaboration at CERN

Factorized optical potential
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In collaboration with P. Navratil (TRIUMF), to appear soon
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In collaboration with P. Navratil (TRIUMF), to appear soon
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Future
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Include three-body forces and medium effects

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N3LO
(Q/Λχ)4

0 iv0ii0
v0i + <v0ij> 

iv0i

jv0ij

0

0 iv0ii0
v0i + <v0ij> 

iv0i

jv0ij

0

0 iv0ii0
v0i + <v0ij> 

iv0i

jv0ij

0

• Contribution to the potential through a density-
dependent two body forces 

•  To be consistent, also medium corrections to the 
propagator should be included 

• Not consistent with the perturbative order of the 
two-body sector (N4LO)

In collaboration with R. Machleidt (Idaho), work in progress
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Thank you very much


