

OPTICAL POTENTIALS FROM CHIRAL FORCES

Motivation

Experimental matter densities

The aim of the **EXL experiment** is to study the structure of unstable exotic nuclei in light-ion scattering experiments at intermediate energies see Nuclear matter

see Nuclear matter distribution of Ni56 measured with EXL, M. Von Schmid (2015)

Antiproton physics

Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions, **PRC77 (2008) 024317**

Neutron density distributions of 204,206,208 Pb deduced via proton elastic scattering at $E_p = 295$ MeV, **PRC82 (2010) 044611**

Theoretical point of view

It is important to constrain and to test the most recent chiral potentials

- convergence
- accuracy
- predictive power

OPTICAL POTENTIALS FROM CHIRAL FORCES

Method

OPTICAL POTENTIALS FROM CHIRAL FORCES

Model

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding **Lippmann-Schwinger equation** for the many-body transition amplitude T

$T = V + VG_0(E)T$

Phys. Rev. C 93, 034619 (2016)

7

OPTICAL POTENTIALS FROM CHIRAL FORCES

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$T = V + VG_0(E)T$$

Spectator expansion

Two nucleon interaction
dominates the scattering
transfer the scattering

$$T = \sum_{i=1}^{n} T_{0i}$$

$$T_{0i} = v_{0i} + v_{0i}G_{0}(E)T,$$

$$T_{0i} = v_{0i} + v_{0i}G_{0}(E)\sum_{j} T_{0j}$$

$$= v_{0i} + v_{0i}G_{0}(E)T_{0i} + v_{0i}G_{0}(E)\sum_{j\neq i} T_{0j}$$

$$T_{0i} = v_{0i} + v_{0i}G_{0}(E)\sum_{j\neq i} T_{0j}$$

$$T_{0i} = v_{0i} + v_{0i}G_{0}(E)\sum_{j\neq i} T_{0j}$$

$$T_{0i} = t_{0i} + t_{0i}G_{0}(E)\sum_{j\neq i} T_{0j}.$$
Watson multiple scattering

$$T_{0i} = t_{0i} + t_{0i}G_{0}(E)\sum_{j\neq i} T_{0j}.$$
Phys. Rev. C 93, 034619 (2016)

OPTICAL POTENTIALS FROM CHIRAL FORCES

PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA

Ω

2 Active

First-order optical potential

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

$$\begin{split} \hat{U}(\boldsymbol{k}',\boldsymbol{k};\omega) &= (A-1) \langle \boldsymbol{k}', \Phi_A | t(\omega) | \boldsymbol{k}, \Phi_A \rangle \\ \boldsymbol{q} &= \boldsymbol{k}' - \boldsymbol{k}, \quad \boldsymbol{K} \equiv \frac{1}{2} (\boldsymbol{k}' + \boldsymbol{k}) \\ \hat{U}(\boldsymbol{q},\boldsymbol{K};\omega) &= \frac{A-1}{A} \eta(\boldsymbol{q},\boldsymbol{K}) \\ &\times \sum_{N=n,p} t_{pN} \left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K};\omega \right] \rho_N(\boldsymbol{q}) \quad \stackrel{\text{Optimum}}{\text{factorization}} \\ \eta(\boldsymbol{q},\boldsymbol{K}) &= \\ \mathbf{M} \\ \text{øller factor} \left[\frac{E_{\text{proj}}(\boldsymbol{\kappa}') E_{\text{proj}}(-\boldsymbol{\kappa}') E_{\text{proj}}(\boldsymbol{\kappa}) E_{\text{proj}}(-\boldsymbol{\kappa})}{[E_{\text{proj}}(\boldsymbol{k}') E_{\text{proj}}(-\frac{q}{2} - \frac{K}{A}) E_{\text{proj}}(\boldsymbol{k}) E_{\text{proj}}(\frac{q}{2} - \frac{K}{A})} \right]^{\frac{1}{2}} \end{split}$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

First-order optical potential

$$\begin{split} \hat{U}(\boldsymbol{q},\boldsymbol{K};\omega) &= \hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) + \frac{i}{2}\boldsymbol{\sigma}\cdot\boldsymbol{q}\times\boldsymbol{K}\hat{U}^{ls}(\boldsymbol{q},\boldsymbol{K};\omega) \\ &\hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K}) \\ \end{split} \\ \end{split} \\ \begin{aligned} \hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) &= \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K}) \left[\boldsymbol{q},\frac{A+1}{A}\boldsymbol{K};\omega\right]\rho_{N}(\boldsymbol{q}) \\ &\hat{U}^{ls}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K})\left(\frac{A+1}{2A}\right) \\ \end{aligned} \\ \end{split} \\ \begin{split} \begin{split} & Spin-orbit \text{ component}} \\ & \times \sum_{N=n,p} t_{pN}^{ls} \left[\boldsymbol{q},\frac{A+1}{A}\boldsymbol{K};\omega\right]\rho_{N}(\boldsymbol{q}) \end{split}$$

Phys. Rev. C 93, 034619 (2016)

Matter densities

Typel and Wolter , Nuc. Phys. A 656 (1999) 331

OPTICAL POTENTIALS FROM CHIRAL FORCES

Scattering observables

Spin-flip amplitude

 $M(k_0, \theta) = A(k_0, \theta) + \boldsymbol{\sigma} \cdot \hat{\boldsymbol{N}} C(k_0, \theta)$

$$A(\theta) = \frac{1}{2\pi^2} \sum_{L=0}^{\infty} \left[(L+1)F_L^+(k_0) + LF_L^-(k_0) \right] P_L(\cos\theta)$$

$$F_{LJ}(k_0) = -\frac{A}{A-1} 4\pi^2 \mu(k_0 (\hat{T}_{LJ}) k_0, k_0; E)$$

$$C(\theta) = \frac{i}{2\pi^2} \sum_{L=1}^{\infty} \left[F_L^+(k_0) - F_L^-(k_0) \right] P_L^1(\cos\theta)$$

Differential cross section
$$\frac{d\sigma}{d\Omega}(\theta) = |A(\theta)|^2 + |C(\theta)|^2$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

NN potential

Chiral potentials: why?

Chiral potentials

I. QCD symmetries are consistently respected

2. Systematic expansion (order by order you know exactly the terms to be included)

3. Theoretical errors

4.Two- and three- body forces belong to the same framework

Phenomen. potentials

I. QCD symmetries are not respected

2. Expansion determined by phenomenology (add whatever you need). A lot of freedom

3. Errors can't be estimated

4. Two- and three- body forces are not related one to each other

Nucleon-Nucleon Chiral potentials

Entem, Machleidt, Nosyk (N4LO)

Phys. Rev. C91, 014002 (2015), Phys.Rev. C96 (2017)

$$V(\boldsymbol{k}, \boldsymbol{k}') \rightarrow V(\boldsymbol{k}, \boldsymbol{k}') f^{\Lambda}(k, k')$$

$$f^{\Lambda} = \exp\left(-(k'/\Lambda)^{2n} - (k/\Lambda)^{2n}\right)$$

Epelbaum, Krebs, Meissner (N4LO)

Phys. Rev. Lett. 115, 122301 (2015), Eur. Phys. J. A51, 53 (2015)

$$V_{\text{long-range}}^{\text{reg}}(\boldsymbol{r}) = V_{\text{long-range}}(\boldsymbol{r})f\left(\frac{r}{R}\right)$$

 $f\left(\frac{r}{R}\right) = \left(1 - \exp\left(-\frac{r^2}{R^2}\right)\right)^n$

spectral function subtraction Short-range

-buo-

$$V(\boldsymbol{k}, \boldsymbol{k}') \rightarrow V(\boldsymbol{k}, \boldsymbol{k}') f^{\Lambda}(k, k')$$

Chiral potentials- Phase shifts

Phys. Rev. Lett. 115, 122301 (2015), Eur. Phys. J. A51, 53 (2015)

R = 0.9 fm — NLO — N²LO — N³LO New renormalisation technique in the coordinate space with the cutoff *R* being chosen in the range of $R = 0.8 \dots 1.2 \text{ fm}$. For contact interactions, they use a non- local Gaussian regulator in momentum space with the cutoff $\Lambda = 2R^{-1}$

$f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^6$

OPTICAL PCTENTIALS FROM CHIRAL FORCES

N⁴LO

Chiral potentials- Phase shifts

Phys. Rev. C91, 014002 (2015), Phys.Rev. C96 (2017)

Antinucleon-Nucleon Chiral potentials

Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory Ling-Yun Dai, Johann Haidenbauer and Ulf-G. Meißner JHEP07(2017)078

Real and imaginary parts of various $\overline{N}N$ phase shifts at N³LO for cutoffs R = 0.7–1.2 fm

Results

NN amplitudes - 200 MeV

 $M(\boldsymbol{\kappa}',\boldsymbol{\kappa},\omega) = \langle \boldsymbol{\kappa}' | M(\omega) | \boldsymbol{\kappa} \rangle = -4\pi^2 \mu \left\langle \boldsymbol{\kappa}' | t(\omega) | \boldsymbol{\kappa} \right\rangle$

Phys. Rev. C 96 (2017) 044001

 θ [deg]

Phys. Rev. C 96 (2017) 044001

PHYSICS AND ASTRONOMY DPT. - UNIVERSITY OF BOLOGNA

Oxygen 16

Phys. Rev. C 96 (2017) 044001

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)

Phys. Rev. C 98 (2018) 064602

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)

Phys. Rev. C 98 (2018) 064602

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003) and extension to 1GeV

Phys. Rev. C 98 (2018) 064602

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003) and extension to 1GeV

Phys. Rev. C 98 (2018) 064602

KD: A. J. Koning and J. P. Delaroche, Nucl. Phys. A713, 231 (2003)

Phys. Rev. C 98 (2018) 064602

OPTICAL POTENTIALS FROM CHIRAL FORCES

OPTICAL POTENTIALS FROM CHIRAL FORCES

<u>Antiproton</u>

Basic ingredients

 $\alpha =$

- (Anti)nucleon-nucleon scattering matrix $t_{\alpha N}$
- Non-local nuclear densities •

$$\rho_{\rm op} = \sum_{i=1}^{A} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{r}' - \boldsymbol{r}'_i)$$

The matrix elements between a general initial and final state are obtained from the NCSM PRC 97, 034619 (2018)

NCSM

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{N=0}^{N_{\max}} \sum_i c_{Ni}^{J^{\pi}T} |ANiJ^{\pi}T\rangle$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

In collaboration with P. Navratil (TRIUMF), to appear soon

Target density •

NN - N⁴LO500 Entem, Machleidt, Nosyk, PRC 96 024004 (2017)

Navratil, Few-Body Syst. 41 117 (2007) $+ 3N - N^{2}LO$

Scattering matrix ٠

Dai, Haidenbauer, Meißner, JHEP 2017, 78 (2017) – N³LO

- > Local regulator for the long range part: R = 0.9 fm
- > Non-local regulator for the contact terms: $\Lambda = 2 R^{-1}$
- > The interaction is connected to the NN one through the G-parity in an unambiguous way

Antiproton

OPTICAL POTENTIALS FROM CHIRAL FORCES

Antiproton

OPTICAL POTENTIALS FROM CHIRAL FORCES

In collaboration with P. Navratil (TRIUMF), to appear soon

OPTICAL POTENTIALS FROM CHIRAL FORCES

Future

Include three-body forces and medium effects

- Contribution to the potential through a densitydependent two body forces
- To be consistent, also medium corrections to the propagator should be included
- Not consistent with the perturbative order of the two-body sector (N4LO)

In collaboration with R. Machleidt (Idaho), work in progress

Thank you very much

OPTICAL POTENTIALS FROM CHIRAL FORCES