Microscopic optical potential from chiral forces

Paolo Finelli
University of Bologna and INFN

In collaboration with
Matteo Vorabbi (TRIUMF)
Carlotta Giusti (Pavia)
Motivation
Experimental matter densities

The aim of the EXL experiment is to study the structure of unstable exotic nuclei in light-ion scattering experiments at intermediate energies.

see Nuclear matter distribution of Ni56 measured with EXL, M. Von Schmid (2015)

Antiproton physics

Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions, PRC77 (2008) 024317

Theoretical point of view

It is important to constrain and to test the most recent chiral potentials

• convergence
• accuracy
• predictive power
Method
Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: optical potentials.

\[\frac{d\sigma}{d\Omega} \]

Optical potentials:

\[V_{NN} = \begin{cases} G_{NN} \\ t_{NN} \end{cases} \]

\[U_{opt}(k', k, E) \]

\[\frac{d\sigma}{d\Omega} \]
Model
The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding **Lippmann-Schwinger equation** for the many-body transition amplitude T

$$T = V + VG_0(E)T$$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding **Lippmann-Schwinger equation** for the many-body transition amplitude T

$$T = V + VG_0(E)T$$

Spectator expansion

Two nucleon interaction dominates the scattering process

$$T_{0i} = v_{0i} + v_{0i}G_0(E)T,$$

$$T_{0i} = v_{0i} + v_{0i}G_0(E)\sum_j T_{0j}$$

$$= v_{0i} + v_{0i}G_0(E)T_{0i} + v_{0i}G_0(E)\sum_{j\neq i} T_{0j}$$

$$(1 - v_{0i}G_0(E))T_{0i} = v_{0i} + v_{0i}G_0(E)\sum_{j\neq i} T_{0j}$$

$$T_{0i} = t_{0i} + t_{0i}G_0(E)\sum_{j\neq i} T_{0j}.$$

Watson multiple scattering

First-order optical potential

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

\[\hat{U}(k', k; \omega) = (A - 1) \langle k', \Phi_A | t(\omega) | k, \Phi_A \rangle \]

\[q \equiv k' - k, \quad K \equiv \frac{1}{2}(k' + k) \]

\[\hat{U}(q, K; \omega) = \frac{A - 1}{A} \eta(q, K) \]

\[\times \sum_{N=n,p} t_{pN} \left[q, \frac{A + 1}{A} K; \omega \right] \rho_N(q) \]

\[\eta(q, K) = \]

Møller factor

\[\left[\frac{E_{\text{proj}}(k')}{E_{\text{proj}}(-k')} \frac{E_{\text{proj}}(-k)}{E_{\text{proj}}(k)} \frac{E_{\text{proj}}(-\kappa)}{E_{\text{proj}}(\kappa)} \right]^{\frac{1}{2}} \]

Optimum factorization factor

First-order optical potential

\[
\hat{U}(q, K; \omega) = \hat{U}^c(q, K; \omega) + \frac{i}{2} \sigma \cdot q \times K \hat{U}^{ls}(q, K; \omega)
\]

Central component

\[
\hat{U}^c(q, K; \omega) = \frac{A - 1}{A} \eta(q, K)
\]

\[
\times \sum_{N=n,p} t^c_{pN} \left[q, \frac{A + 1}{A} K; \omega \right] \rho_N(q)
\]

Spin-orbit component

\[
\hat{U}^{ls}(q, K; \omega) = \frac{A - 1}{A} \eta(q, K) \left(\frac{A + 1}{2A} \right)
\]

\[
\times \sum_{N=n,p} t^{ls}_{pN} \left[q, \frac{A + 1}{A} K; \omega \right] \rho_N(q)
\]
Matter densities

\[\rho_{\text{ch}} (e/\text{fm}^3) \]

\[r (\text{fm}) \]

\[^{16}\text{O} \]

\[\text{expt.} \]

\[\mathcal{L} = \bar{\psi} \left[\gamma^\mu \left(i \partial_\mu - \gamma_\omega A_\mu^{(\omega)} - \gamma_\nu \frac{\tau}{2} \cdot A_\mu^{(\nu)} - e \frac{1 + \tau_3}{2} A_\mu^{(\gamma)} \right) - (\rho - \Gamma_\phi \phi) \right] \psi
+ \frac{1}{2} \left[\partial_\mu \phi \partial^\mu \phi - m_\phi^2 \phi^2 - \frac{1}{2} F^{(\omega)}_{\mu\nu} F^{(\omega)\mu\nu} + m_\omega^2 A_\mu^{(\omega)} A^{(\omega)\mu}
- \frac{1}{2} F_{\mu\nu}^{(\gamma)} F^{(\gamma)\mu\nu} \right] \]

Density-dependent couplings

DDME1 parametrization
T. Nikšić, D. Vretenar, P. Finelli and P. Ring
Scattering observables

\[M(k_0, \theta) = A(k_0, \theta) + \sigma \cdot \hat{N} C(k_0, \theta) \]

\[A(\theta) = \frac{1}{2\pi^2} \sum_{L=0}^{\infty} [(L + 1)F_L^+(k_0) + LF_L^-(k_0)] P_L(\cos \theta) \]

\[F_{LJ}(k_0) = -\frac{A}{A-1} 4\pi^2 \mu(k_0) \langle \hat{T}_{LJ} | k_0, k_0; E \rangle \]

\[C(\theta) = \frac{i}{2\pi^2} \sum_{L=1}^{\infty} [F_L^+(k_0) - F_L^-(k_0)] P_L^{1}(\cos \theta) \]

Differential cross section

\[\frac{d\sigma}{d\Omega}(\theta) = |A(\theta)|^2 + |C(\theta)|^2 \]

Analyzing power

\[A_y(\theta) = \frac{2 \text{Re}[A^*(\theta) C(\theta)]}{|A(\theta)|^2 + |C(\theta)|^2} \]

\[U(r) + L \cdot S \neq 0 \]

\[U(r) + L \cdot S > 0 \]
NN potential
Chiral potentials: why?

<table>
<thead>
<tr>
<th>Chiral potentials</th>
<th>Phenomen. potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. QCD symmetries are consistently respected</td>
<td>1. QCD symmetries are not respected</td>
</tr>
<tr>
<td>2. Systematic expansion (order by order you know exactly the terms to be included)</td>
<td>2. Expansion determined by phenomenology (add whatever you need). A lot of freedom</td>
</tr>
<tr>
<td>3. Theoretical errors</td>
<td>3. Errors can’t be estimated</td>
</tr>
<tr>
<td>4. Two- and three- body forces belong to the same framework</td>
<td>4. Two- and three- body forces are not related one to each other</td>
</tr>
</tbody>
</table>
Nucleon-Nucleon Chiral potentials

Entem, Machleidt, Nosyk (N4LO)

\[
V(k, k') \rightarrow V(k, k') f^\Lambda(k, k')
\]

\[
f^\Lambda = \exp\left(-\left(\frac{k'}{\Lambda}\right)^{2n} - \left(\frac{k}{\Lambda}\right)^{2n}\right)
\]

Epelbaum, Krebs, Meissner (N4LO)

\[
V_{\text{long-range}}(r) = V_{\text{long-range}}(r) f\left(\frac{r}{R}\right)
\]

\[
f\left(\frac{r}{R}\right) = \left(1 - \exp\left(-\frac{r^2}{R^2}\right)\right)^n
\]

spectral function subtraction

\[
V(k, k') \rightarrow V(k, k') f^\Lambda(k, k')
\]

\[
f^\Lambda = \exp\left(-\left(\frac{k'}{\Lambda}\right)^{2n} - \left(\frac{k}{\Lambda}\right)^{2n}\right)
\]
Chiral potentials - Phase shifts

New renormalisation technique in the coordinate space with the cutoff R being chosen in the range of $R = 0.8 \ldots 1.2$ fm. For contact interactions, they use a non-local Gaussian regulator in momentum space with the cutoff $\Lambda = 2R^{-1}$

$$f \left(\frac{r}{R} \right) = \left[1 - \exp \left(-\frac{r^2}{R^2} \right) \right]^6$$
Chiral potentials - Phase shifts

Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory
Ling-Yun Dai, Johann Haidenbauer and Ulf-G. Meißner JHEP07(2017)078

Real and imaginary parts of various $\bar{N}N$ phase shifts at N^3LO for cutoffs $R = 0.7–1.2$ fm
Results
NN amplitudes - 200 MeV

\[M(\kappa', \kappa, \omega) = \langle \kappa' | M(\omega) | \kappa \rangle = -4\pi^2 \mu \langle \kappa' | t(\omega) | \kappa \rangle \]

\[a_{pN} = \frac{1}{f_{pN}\pi^2} \sum_{L=0}^{\infty} P_L(\cos \phi) \left[(2L + 1) M_{LL}^{L,S=0} + (2L + 1) M_{LL}^{L,S=1} + (2L - 1) M_{LL}^{L-1,S=1} \right] \]

\[c_{pN} = \frac{i}{f_{pN}\pi^2} \sum_{L=1}^{\infty} P_L^1(\cos \phi) \left[\left(\frac{2L + 3}{L+1} \right) M_{LL}^{L+1,S=1} - \left(\frac{2L - 1}{L} \right) M_{LL}^{L-1,S=1} \right] \]
Oxygen 16

![Graphs showing angular distributions of different optical potentials for Oxygen 16](22)

- **Graph (a)**: Angular distribution of differential cross section $d\sigma/d\Omega$ in units of [mb/sr].
- **Graph (b)**: Alternating current A_y.
- **Graph (c)**: Quadrupole moment Q.

These graphs illustrate the comparison between N^2LO, N^3LO, and N^4LO optical potentials, with data points shown as symbols.

Microscopic vs. Phenomenological

Microscopic vs. Phenomenological

Figure 2. (Color online) The same as in Fig. 1 for ^{40}Ca, ^{42}Ca, ^{44}Ca, ^{48}Ca isotopes at 200 MeV. Experimental data from Refs. [45, 46].

Figure 3. (Color online) The same as in Fig. 1 for Ni isotopes: ^{58}Ni at $E = 192$ and 295 MeV, ^{60}Ni at $E = 178$ MeV, and ^{62}Ni at $E = 156$ MeV. Experimental data from Refs. [45, 46].

Figure 2. (Color online) The same as in Fig. 1 for 40Ca, 42Ca, 44Ca, and 48Ca isotopes at 200 MeV. Experimental data from Refs. [45, 46].

Figure 3. (Color online) The same as in Fig. 1 for Ni isotopes: 58Ni at $E = 192$ and 295 MeV, 60Ni at $E = 178$ MeV, and 62Ni at $E = 156$ MeV. Experimental data from Refs. [45, 46].

Microscopic vs. Phenomenological

Figure 4. (Color online) The same as in Fig. 1 for Sn isotopes: ^{116}Sn at $E = 295$ MeV and $^{118},^{116},^{120},^{122},^{124}\text{Sn}$ at $E = 295$ MeV. Experimental data from Refs. [45, 46].

Microscopic vs. Phenomenological

Figure 5. (Color online) The same as in Fig. 1 for Pb isotopes: 208Pb at $E = 200$ MeV and $^{204},^{206},^{208}$Pb at $E = 295$ MeV. Experimental data from Refs. [45, 46].
Microscopic vs. Phenomenological

Figure 6. (Color online) The same as in Fig. 1 for 16O and 40Ca, 42Ca, 44Ca, 48Ca at $E = 318$ MeV and 58Ni at $E = 333$ MeV. Experimental data from Refs. [45, 46].
Microscopic vs. Phenomenological

Figure 7. (Color online) The same as in Fig. 1 for ^{56}Ni at $E = 400\text{ MeV}$.

Figure 8. (Color online) The same as in Fig. 2 but for the analyzing power A_y. Experimental data from Refs. [45, 46].

Figure 10. (Color online) Analyzing power A_y as a function of the angle θ for elastic proton scattering on ^{16}O, and ^{208}Pb at $E = 200\text{ MeV}$, ^{58}Ni at $E = 192\text{ MeV}$, and ^{60}Ni at $E = 178\text{ MeV}$.

Nuclear matter distribution of 56Ni measured with EXL

Kerndichteverteilung von 56Ni gemessen mit EXL

Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Mirko von Schmid M.Sc. aus Fulda

2015 — Darmstadt — D 17
Antiproton

\[U(\alpha, q, K; E) = \sum_{N=n,p} \int d^3P \, \eta(P, q, K) \, t_{\alpha N} \left[q, \frac{1}{2} \left(\frac{A+1}{A} K - P \right) ; E \right] \]

Projectiles
\[\alpha = (p, n, \bar{p}) \]
\[\times \rho_N \left(P - \frac{A-1}{2A} q, P + \frac{A-1}{2A} q \right) \]
\[q = k' - k \]
\[K = \frac{1}{2} (k' + k) \]

Basic ingredients

- (Anti)nucleon-nucleon scattering matrix \(t_{\alpha N} \)
- Non-local nuclear densities

\[\rho_{op} = \sum_{i=1}^{A} \delta(r - r_i) \delta(r' - r_i') \]

The matrix elements between a general initial and final state are obtained from the NCSM PRC 97, 034619 (2018)

NCSM

\[|\Psi_A^{J^\pi T}\rangle = \sum_{N=0}^{N_{\text{max}}} \sum_i c_i^{J^\pi T} |AN_iJ^\pi T\rangle \]

In collaboration with P. Navratil (TRIUMF), to appear soon

- **Target density**
 - NN - N^4LO500 Entem, Machleidt, Nosyk, PRC 96 024004 (2017)
 - + 3N - N^2LO Navratil, Few-Body Syst. 41 117 (2007)

- **Scattering matrix**

 ➢ Local regulator for the long range part: \(R = 0.9 \text{ fm} \)

 ➢ Non-local regulator for the contact terms: \(\Lambda = 2 R^{-1} \)

 ➢ The interaction is connected to the NN one through the G-parity in an unambiguous way
Antiproton

Experimental data are from the LEAR collaboration at CERN

Local: factorized optical potential

\[U(q, K; E) \sim \sum_{\alpha=n,p} t_{p\alpha} \left[q, \frac{A+1}{2A} K; E \right] \rho_\alpha(q) \]

In collaboration with P. Navratil (TRIUMF), to appear soon

In collaboration with P. Navratil (TRIUMF), to appear soon
Antiproton

Experimental data are from the LEAR collaboration at CERN

Factorized optical potential

\[U(q, K; E) \sim \sum_{\alpha=n,p} t_{p\alpha} \left[q, \frac{A + 1}{2A} K; E \right] \rho_{\alpha}(q) \]

In collaboration with P. Navratil (TRIUMF), to appear soon
In collaboration with P. Navratil (TRIUMF), to appear soon
Future
Include three-body forces and medium effects

- Contribution to the potential through a density-dependent two-body forces
- To be consistent, also medium corrections to the propagator should be included
- Not consistent with the perturbative order of the two-body sector (N4LO)

In collaboration with R. Machleidt (Idaho), work in progress
Thank you very much