Reactions with Exotic Nuclei at Near and Sub-barrier Energies

Cheng-Jian Lin

China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413, China

Nuclear Structure and Dynamics – NSD2019
13-17 May, 2019, Venice
Outline

1. Potentials of Exotic Nuclear Systems
2. Recent RIB experiments
3. Summary
Optical Model is a successful model to explain the nuclear scattering and reaction, which resembles the case of light scattered by an opaque glass sphere.

Optical Model Potential (OMP):

\[U = V(r) + iW(r) \]

- **attractive**
- **absorptive**

★ phenomenological potential, independent on energy.

★ A basic task in nuclear reaction study is to understand the nuclear interaction potential.

Tightly-bound Nuclei

A universal phenomenon at energies around the Coulomb barrier

Weakly-bound Stable Nuclei

Threshold Anomaly

\[^7\text{Li} (\alpha + t) \]
\[S_\alpha = 2.47 \text{ MeV} \]

\[^6\text{Li} (\alpha + d) \]
\[S_\alpha = 1.47 \text{ MeV} \]

Abnormal Threshold Anomaly

\[^9\text{Be} (\alpha + n + \alpha) \]
\[S_n = 1.66 \text{ MeV} \]

N. Yu et al., JPG 371, 075108 (2010).
Impossible to extract effective OMPs at energy far below the barrier.

OMPs are usually extracted from elastic scattering.

★ Impossible to extract effective OMPs at energy far below the barrier.

Transfer Method

Transfer reaction $A(a,b)B$

Transition amplitude:

$$T = J \int d^3 r_b \int d^3 r_a \chi^(-)(\vec{k}_f, \vec{r}_b)^* \langle bB|V|aA \rangle \chi^+(\vec{k}_i, \vec{r}_a),$$

4 wave functions are needed,

- two bound states: $b+x$ & $A+x$ (single-particle potential model)
- two scattering states: incoming & outgoing (optical potentials)

16O(14N,13C)17F: Chin. Phys. Lett. 25, 4237 (2008).

63Cu(7Li,6He)64Zn: Phys. Rev. C 95, 034616 (2017).
Two experiments have been done at HI-13 tandem accelerator @ CIAE

Exp1: $E_{\text{beam}} = 42.55, 37.55, 32.55, 28.55, 25.67$ MeV – high energies 【2004.8】

★ Angular distributions of both elastic scattering and transfer were measured.

2 Telescopes: SSSD(20 µm) + DSSD(60 µm) + QSD(100 µm)

Single-particle states S-factors are well known
Analyses: $^{208}\text{Pb}({}^7\text{Li}, {}^6\text{He})^{209}\text{Bi}$

DWBA & CRC analyses

Elas.

$^{\text{7Li}}+^{208}\text{Pb}$

Elastic scattering

$E_{\text{cm}} = 42.55 \text{ MeV}$

θ_{cm} (deg)

$\frac{d\sigma}{d\Omega}$ (mb/sr)

$\frac{d\sigma}{d\Omega}$ (mb/sr)

Tran.

$^{208}\text{Pb}({}^7\text{Li}, {}^6\text{He})^{209}\text{Bi}$

@ 25.67 MeV

24.30 MeV

$^{7}\text{Li}+^{208}\text{Pb}$ elas.

$^{6}\text{He}+^{209}\text{Bi}$ elas.

$^{208}\text{Pb}({}^7\text{Li}, {}^6\text{He})^{209}\text{Bi}$

$^{208}\text{Pb}({}^7\text{Li}, {}^6\text{He})^{209}\text{Bi}^*$

0.90 MeV

May 30, 2019

NSD201 @ Venice
Results: \(^{208}\text{Pb}(^{7}\text{Li},^{6}\text{He})^{209}\text{Bi}\)

- OMPs of the \(^{6}\text{He}+^{209}\text{Bi}\) system are determined precisely;
- The decreasing trend in the imaginary part is observed, and the threshold energy is about 13.73 MeV (~0.68\(V_{B}\));
- The real part looks normal, i.e. like a bell shape around the barrier;
- The dispersion relation cannot describe the behavior between the real and imaginary part.

Dispersion Relation

★ Dispersion relation results from causality, connecting real and imaginary part;
★ Any wave/particle should follow this rule when it passes through a media;
★ The classical dispersion relation is not applicable for exotic nuclear systems.

Possible reasons:

• Causality \rightarrow dispersion relation
 stable systems: causality \leftrightarrow analyticity

• Cauchy integration
 infinity poles (breakup) & off-axis (multi-process)

• Negative Index of Refraction
 causality based criteria must be used with care

• Locality vs. non-locality
 equivalent local potential in
 Schrödinger equation

Metamaterials?

four-body
Outline

1. Potentials of Exotic Nuclear Systems

2. Recent RIB experiments

3. Summary
Reactions with RIBs

♠ Elastic scattering
 3-body, 4-body
 CDCC ...

♠ Fusion
 TF, ICF, CF ...

♠ Breakup/transfer
 Effects & mechanisms

BK/TR Processes

★ How to identify the different reaction process?

complete-kinematics measurement

2-body kinematics

3-body kinematics

Same products

May 30, 2019

NSD201 @ Venice
Recent Experiments

★ Complete-kinematics measurement ; ★ Reactions induced by 7Be, 8B, 17F ...

RIBLL: 17F+89Y, 208Pb, 7Be+209Bi
CRIB: 17F+12C, 58Ni, 8B+120Sn

40% of 4π 8% of 4π

May 30, 2019

NSD201 @ Venice
Preliminary Results: $^{17}\text{F} + ^{58}\text{Ni}$

Angular distributions of quasi-elastic scattering.

[OMP & CDCC calculated by Lei Jin]
Preliminary Results: 17F+58Ni

Angular distributions of breakups/transfer
[theoretical calculated by Lei Jin]

Preliminary conclusions:

- The non-elastic breakups are dominant at energies around the barrier;
- Fusions are suppressed (enhanced) at energies above (below) the barrier.
Exclusive Breakup

★ Exclusive breakup \(^{17}\text{F} \rightarrow ^{16}\text{O} + \text{p}, S_p = 0.6 \text{ MeV}\)

Our result: \(\sigma \sim 1.2 \text{ mb} @ 63 \text{ MeV};\) Liang’s result: \(\sigma \sim 15.6 \text{ mb} @ 170 \text{ MeV}.\)

[J.F. Liang et al., PLB 681, 22 (2009).]

Others \(^{7}\text{Be}, ^{8}\text{B} \ldots\) also show very low cross sections of exclusive breakup.

★ Why is it so low?

Possible reasons:

• Constraint by the Coulomb barrier, (need to penetrate the barrier)

• Screen effects due to the Coulomb repulsion (dynamic polarization)

Summary

★ **Optical potentials** of exotic nuclear systems have been extracted by the **transfer method**. The complete picture of abnormal “threshold anomaly” for the \(^{6}\text{He}+^{209}\text{Bi}\) system has been obtained. The classical **dispersion relation** cannot descript the behavior between the imaginary potential and real potential.

★ Reactions of \(^{17}\text{F}+^{12}\text{C}, \ ^{58}\text{Ni}, \ ^{89}\text{Y}, \ ^{208}\text{Pb}, \ ^{7}\text{Be}+^{209}\text{Bi}, \text{and} \ ^{8}\text{B}+^{120}\text{Sn}\) systems have been systematically measured by the **complete-kinematics measurement** method with large solid-angle covered detector array. The **exclusive breakup cross sections** (in coincidence) were found to be very low, which needs further understand.
Collaborators

Affiliations

1. Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3. Center for Nuclear Study, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan
4. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
5. Dipartimento di Fisica, Universita di Padova, via F. Marzolo 8, I-35131 Padova, Italy
6. Department of Pharmacy, University Federico II, via D. Montesano 49, I-80131 Napoli, Italy
7. Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
8. Istituto Nazionale di Fisica Nucleare-Sezione di Padova, via F. Marzolo 8, I-35131 Padova, Italy
9. Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, Via Cintia, I-80126 Napoli, Italy
10. Department of Physics, Guangxi Normal University, Guilin 541004, China
11. National Innovation Center of Radiation Application, Beijing 102413, China

... ...
Thank you for your attention!
Exotic Nuclei

♠ Exotic nuclei:
weakly-bound & having unusual structures (cluster, halo/skin …)

♠ Reactions with exotic nuclei:
easily breakup, strongly couplings to continuum state …

cluster

6Li (α+d)
\[S_\alpha = 1.47 \text{ MeV} \]

7Li (α+t)
\[S_\alpha = 2.47 \text{ MeV} \]

9Be (α+n+α)
\[S_n = 1.66 \text{ MeV} \]

halo

11Be (10Be+n)
\[S_n = 0.50 \text{ MeV} \]

6He (α+2n)
\[S_{2n} = 0.98 \text{ MeV} \]

Borromean
Reactions with Exotic Nuclei
Reactions with light exotic nuclei (A<20)

- Elastic, fusion, breakup ...
- Proton-rich nuclei
- ^{7}Be, ^{8}B, ^{17}F (Key R&D Program)
- ^{12}N, $^{17,18}\text{Ne}$...
- Complete-kinematics measurement
 (particle identification & large solid-angle covered)

The 7Be+209Bi Experiment

1. Exclusive breakup: 7Be → 3He+4He (coin. Eff. ~10% by MC simulations);
2. 4He stripping: 7Be+209Bi → 3He+213At;
3. 3He stripping: 7Be+209Bi → 4He+212At;
4. $1n$ stripping: 7Be+209Bi → 6Be(\rightarrow4He+p+p)+210Bi;
5. $1n$ pickup: 7Be+209Bi → 8Be(\rightarrow4He+4He)+208Bi;
6. $1p$ striping: 7Be+209Bi → 6Li(\rightarrow4He+d)+210Po;
7. $1p$ pickup: 7Be+209Bi → 8B(\rightarrow??)+208Pb;
8. Fusion: 7Be+209Bi → 216Fr → α, p, n eva. & decay (energy & angular distri.)
9. ICF (Ene-Ang corr.)