# Shape Transitions Between and Within Zr Isotopes



TECHNISCHE UNIVERSITÄT DARMSTADT

### **Volker Werner**

#### Institut für Kernphysik, TU Darmstadt AG Pietralla

Volker Werner | Nuclear Structure and Dynamics 2019, Venice | 16 May 2019

### **Overview**



- Introduction to Shape Coexistence / Quantum (Shape) Phase Transition
- The boundary of spherical shape at <sup>98</sup>Zr
  - CoulEx of <sup>98</sup>Zr: GRETINA & CHICO2 at ATLAS / CARIBU
  - New RDDS Plunger data <sup>98</sup>Zr
- Implications for <sup>96</sup>Zr ?
  - A data survey and recent ideas

# **Shape Coexistence & Transitions**



Shape Transition/Coexistence with Strong Mixing / Low Barrier



 $\mathbf{V}$ 

Ω

- Within one valence space
- X(5) / E(5) / CBS

F. lachello, PRL 85/87 (2000/2001) N. Pietralla, PRC 70 (2004)

Shape Transition/Coexistence with Weak Mixing / High Barrier



High-Barrier case

A. Leviathan, PRC 74 (2006)

Change from one to another as function of

- Valence Nucleon Number
- Microscopic Configuration ! T. Togashi, PRL 117 (2016)

Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes 3

β

 $\beta_0$ 

# **Shape Coexistence & Transitions**



Shape Transition/Coexistence with Strong Mixing / Low Barrier



Within one valence space
X(5) / E(5) / CBS

F. lachello, PRL 85/87 (2000/2001) N. Pietralla, PRC 70 (2004)

Shape Transition/Coexistence with Weak Mixing / High Barrier



- Two valence spaces (normal + intruder)
- High-Barrier case

A. Leviathan, PRC 74 (2006)

Change from one to another as function of

- Valence Nucleon Number
- Microscopic Configuration ! T. Togashi, PRL 117 (2016)

Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes 4

# **Type II Shell Evolution**





Togashi et al., Phys. Rev. Lett. 117, 172502 (2016)

<sup>96</sup>Zr – Type II Shell Evolution





# **Zr Isotopes: Systematics**





- $d_{5/2}$  neutron sub-shell closed at A=96  $\rightarrow$  sphericity
- strong ground-state deformation from A=100
- deformed excited structure known at A=94,96
- $0_{12}^+$  states closest at A=100  $\rightarrow$  crossing of structures
- 2<sub>1,2</sub><sup>+</sup> states may cross earlier at A=98

- B(E2) excitation strength at A=98 characterizes 2<sup>+</sup><sub>1</sub>
   collectivity
- only known with (meaning-less) lower limit

# **Coulex Experiment**

ECR II



<sup>252</sup>Cf fission source Gas catcher ECR charge breeder **ATLAS** Fragmen Mass Analyze **GRETINA & CHICO2** Target Area IV Gammasphe ( $\epsilon_v = 6.5\%$ ,  $\Delta E/E \sim 1\%$ , HELIO  $\Delta \theta \sim 1^{\circ}$ ) **RIB Gas Cel** Gretina/Gar Beamline Hot Lab CARIBU Split-Pole **GRETINA**: Physics **Target Area III** ATLAS Lina Highly-segmented HPGe for Large Scattering Facility good Doppler correction Trap Area (like AGATA in Europe) General Purpose Beam Line Accelerator CHICO2: PPAC chamber Figures from www.phy.anl.gov Approximate Scale (in feet) for particle-track reconstruction RP081301

NATIONAL LABORATORY

# Analysis → little <sup>98</sup>Zr in-beam



**Beam dominated** 

- Reaction partner selection in CHICO2
- Doppler-correction using CHICO2 & GRETINA



# Analysis → little <sup>98</sup>Zr in-beam



TECHNISCHE

UNIVERSITÄT DARMSTADT

# **New Stringent B(E2) Limits**



- Stopped Beam Analysis  $\rightarrow$ 152(64) pps <sup>98</sup>Zr in beam
- Transition would have been observed with >40 counts in peak
- Coulomb-excitation calculations used to translate into B(E2) limit



Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes 11

# Ground state still near-spherical



TECHNISCHE

UNIVERSITÄT DARMSTADT

# **RDDS at IFIN-HH / ROSPHERE**





#### <sup>18</sup>O (<sup>96</sup>Zr,<sup>98</sup>Zr) <sup>16</sup>O

- Target: 0.8 mg/cm<sup>2</sup> <sup>96</sup>Zr (57.4%)
- Stopper: ~10 mg/cm<sup>2</sup> Au
- (additional 9.2 mg/cm<sup>2</sup> <sup>96</sup>Zr target for DSAM / level scheme)
- Cologne-type Plunger device
- Tandem accelerator: <sup>18</sup>O beam @ 49 MeV
- Strongest channels from fusion evaporation (e.g. <sup>110</sup>Cd) – with known lifetimes aid to fix τ-curve
  - 2n transfer: ~60 mb

# Lifetime Curve 2<sub>1</sub><sup>+</sup>, <sup>98</sup>Zr





- v<sub>recoil</sub> calculated 0.5-1 %
- verified from coinc. data summed over all distances
- Statistitics too low to disentangle shifted peak from bg
- Singles-analysis, stop peak only



feeder lifetimes (limits) known
 → feeding uncertainties excluded



# 2<sub>1</sub><sup>+</sup> B(E2) Fixed !





# **MCSM Wave Functions**





# **MCSM Wave Functions**





- Spherical ground state and more collective excited 0<sup>+</sup> state in <sup>98</sup>Zr
- $2_1^+$  in <sup>98</sup>Zr: built on collective  $0^+$ !
  - $\rightarrow$  2<sup>+</sup> sph./coll. Swap before 0<sup>+</sup>'s
- Is 2<sup>+</sup><sub>2</sub> the spherical state?
- Switch-over in <sup>100</sup>Zr: deformed becomes ground state
- Where does the spherical 0<sup>+</sup> go?



Togashi, PRL 117, 172502 (2016)

- Occupation numbers and ESPE change
- More protons in  $g_{_{9/2}}$

 $\rightarrow$  bunched neutron SPE

# New Interpretation of Zr Quantum Phase Transition(s)



#### N. Gavrielov, A. Leviatan, F. lachello, arXiv:1904.09919v1 [nucl-th] 22 Apr 2019

- Two configurations:
  - A: spherical, "normal"
  - B: deformed, "intruder"
- At N=60: A and B switch

   → onset of g.s. deformation
   → 1<sup>st</sup> order type II QPT



# New Interpretation of Zr Quantum Phase Transition(s)



#### N. Gavrielov, A. Leviatan, F. lachello, arXiv:1904.09919v1 [nucl-th] 22 Apr 2019

- Two configurations:
  - A: spherical, "normal"
  - B: deformed, "intruder"
- At N=60: A and B switch

   → onset of g.s. deformation
   → 1<sup>st</sup> order type II QPT
- B dominates g.s. for N>58
- B is a collective vibration [U(5)] up to N=58
- Simultaneously, B undergoes change to SU(3)
   → 1<sup>st</sup> order type I QPT
- What happens to A at N>58, 2,\*? how certain are we at N=56?



Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes 19

# "doubly-magic" <sup>96</sup>Zr





Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes 20

# Summary



- 2<sub>1</sub><sup>+</sup> B(E2) in <sup>98</sup>Zr measured to good accuracy
  - $\rightarrow$  <sup>98</sup>Zr is still sph./non-collective in its g.s.
  - $\rightarrow 2_1^+$  is a collective excitation on the "intruder"  $0^+$
- Type II shape evolution of Togashi/Otsuka confirmed
- Data support interpretation of intertwined QPT
  - 1<sup>st</sup> order type II (swap of sph./coll. Structures)
  - 1<sup>st</sup> order type I (sph.→def. Evolution of intruder structure)
- Data base needs to be solidified
  - Structures on ground- and excited bands
    - Need more precise B(E2)s
    - Need Q-moments

Thank you !



**Collaboration:** 

<u>W. Witt</u>, N. Pietralla, T. Beck for the local analyses and discussion

M. Carpenter, G. Savard, D. Cline, R.V.F. Janssens, C.-Y. Wu, S. Zhu for CoulEx @ ATLAS / CARIBU / GRETINA / CHICO2

# N. Marginean, C. Mihai, S. Pascu, and the IFIN-HH Team for RDDS @ IFIN Tandem

SPONSORED BY THE



Federal Ministry of Education and Research

