Shape Transitions Between and Within Zr Isotopes

Volker Werner

Institut für Kernphysik, TU Darmstadt
AG Pietralla
Overview

• Introduction to Shape Coexistence / Quantum (Shape) Phase Transition

• The boundary of spherical shape at 98Zr

 • CoulEx of 98Zr: GRETINA & CHICO2 at ATLAS / CARIBU

 • New RDDS Plunger data 98Zr

• Implications for 96Zr ?

 • A data survey and recent ideas
Shape Coexistence & Transitions

Shape Transition/Coexistence with Strong Mixing / Low Barrier

- Within one valence space
- $X(5) / E(5) / CBS$

F. Iachello, PRL 85/87 (2000/2001)
N. Pietralla, PRC 70 (2004)

Shape Transition/Coexistence with Weak Mixing / High Barrier

- Two valence spaces (normal + intruder)
- **High-Barrier case**

 A. Leviathan, PRC 74 (2006)

Change from one to another as function of
- Valence Nucleon Number
- **Microscopic Configuration**

 T. Togashi, PRL 117 (2016)
Shape Coexistence & Transitions

Shape Transition/Coexistence with Strong Mixing / Low Barrier

- Within one valence space
- $X(5) / E(5) / CBS$

F. Iachello, PRL 85/87 (2000/2001)
N. Pietralla, PRC 70 (2004)

Shape Transition/Coexistence with Weak Mixing / High Barrier

- Two valence spaces (normal + intruder)
- High-Barrier case

A. Leviathan, PRC 74 (2006)

Change from one to another as function of
- Valence Nucleon Number
- Microscopic Configuration !

T. Togashi, PRL 117 (2016)
Type II Shell Evolution

96Zr – Type II Shell Evolution

Electron Scattering at the S-DALINAC

C. Kremer, PRL 117, 172503 (2016)

Well-separated spherical and deformed minima
\Rightarrow weakly mixing structures
Zr Isotopes: Systematics

- $d_{5/2}$ neutron sub-shell closed at $A=96 \rightarrow$ sphericity
- strong ground-state deformation from $A=100$
- deformed excited structure known at $A=94,96$
- $0_{1,2}^+$ states closest at $A=100 \rightarrow$ crossing of structures
- $2_{1,2}^+$ states may cross earlier at $A=98$
- $B(E2)$ excitation strength at $A=98$ characterizes 2_{1}^+ collectivity
- only known with (meaning-less) lower limit
Coulex Experiment

- 252Cf fission source
- Gas catcher
- ECR charge breeder

GRETINA & CHICO2

$(\epsilon_\gamma = 6.5\%, \Delta E/E \sim 1\%, \Delta \theta \sim 1^\circ)$

GRETINA:
Highly-segmented HPGe for good Doppler correction
(like AGATA in Europe)

CHICO2:
PPAC chamber for particle-track reconstruction

Figures from www.phy.anl.gov
Analysis → little 98Zr in-beam

- Reaction partner selection in CHICO2
- Doppler-correction using CHICO2 & GRETINA

Beam dominated by 98Mo

98Zr $2^+_1 \rightarrow 0^+_\text{g.s.}$ – transition observed

98Mo $3^+_1 \rightarrow 2^+_1$

1230 keV

1223 keV
Analysis → little 98Zr in-beam

- Beam composition analysis at beam dump!

\[
\text{(no) } ^{98}\text{Zr } 2^+_1 \rightarrow 0^+_{\text{g.s.}} \\
\text{1223 keV}
\]

\[
^{98}\text{Mo } 3^-_1 \rightarrow 2^+_1 \\
\text{1230 keV}
\]

\[
\text{No} \\
^{98}\text{Zr } 2^+_1 \rightarrow 0^+_{\text{g.s.}} \text{ – transition observed}
\]
New Stringent B(E2) Limits

- Stopped Beam Analysis → 152(64) pps 98Zr in beam
- Transition would have been observed with >40 counts in peak
- Coulomb-excitation calculations used to translate into B(E2) limit

$B(E2) < 11 \text{ W.u.}$

$11 \text{ W.u.} > B_{Zr-98}(E2; 2^+_1 \rightarrow 0^+_{\text{g.s.}}) > 0.7 \text{ W.u.}$ (Ansari et al, 2017)
Ground state still near-spherical

- Little collectivity in ground state (like in 94,96Zr)
- Agreement with Togashi et al. (PRL 117, 2016)
- $B(E2; 2^+_1 \rightarrow 0^+_2)$ ~ magnitude higher
 $\rightarrow 2^+_1$ coll. exc. on 0^+_2

W. Witt, V.W. et al., PRC 98, 041302(R) (2018)
RDDS at IFIN-HH / ROSPHERE

18O (96Zr, 98Zr) 16O

- Target: 0.8 mg/cm2 96Zr (57.4%)
- Stopper: ~10 mg/cm2 Au

- (additional 9.2 mg/cm2 96Zr target for DSAM / level scheme)
- Cologne-type Plunger device
- Tandem accelerator: 18O beam @ 49 MeV
- Strongest channels from fusion evaporation (e.g. 110Cd) – with known lifetimes aid to fix τ-curve
- 2n – transfer: ~60 mb
Lifetime Curve \(\frac{2_{1}^{+}}{98\text{Zr}} \)

- Feeding from observed states subtracted
- Feeder lifetimes (limits) known → feeding uncertainties excluded
- \(v_{\text{recoil}} \) calculated 0.5-1 %
- Verified from coinc. data summed over all distances
- Statistics too low to disentangle shifted peak from bg
- Singles-analysis, stop peak only

\(\tau = 2.8 - 0.7 + 1.1 \, \text{ps} \)
2_{1}^{+} B(E2) Fixed!

- Little collectivity in ground state (like in 94,96Zr)
- Agreement with Togashi et al. (PRL 117, 2016)
- $B(E2; 2_{1}^{+} \rightarrow 0_{2}^{+})$ ~ magnitude higher
 $\rightarrow 2_{1}^{+}$ coll. exc. on 0_{2}^{+}

W. Witt, V.W. et al., PRC 98, 041302(R) (2018)
P. Singh et al., PRL 121, 192501 (2018)
W. Witt, V.W. et al., in preparation
Consequences:

- Spherical ground state and more collective excited 0^+ state in 98Zr
- 2_1^+ in 98Zr: built on collective 0^+! $\rightarrow 2^+$ sph./coll. Swap before 0^+'s
Consequences:

- Spherical ground state and more collective excited 0^+ state in 98Zr
- 2^+_1 in 98Zr: built on collective 0^+! $\rightarrow 2^+$ sph./coll. Swap before 0^+’s
- **Is 2^+_2 the spherical state?**
- Switch-over in 100Zr: deformed becomes ground state
- Where does the spherical 0^+ go?

MCSM Wave Functions

- Occupation numbers and ESPE change
- More protons in $g_{9/2}$ \rightarrow bunched neutron SPE
New Interpretation of Zr Quantum Phase Transition(s)

- Two configurations:
 - A: spherical, “normal”
 - B: deformed, “intruder”

- At N=60: A and B switch
 → onset of g.s. deformation
 → 1st order type II QPT

![Graphs and data](image_url)
New Interpretation of Zr Quantum Phase Transition(s)

- Two configurations:
 - A: spherical, “normal”
 - B: deformed, “intruder”

- At N=60: A and B switch
 → onset of g.s. deformation
 → 1st order type II QPT

- B dominates g.s. for N>58

- B is a collective vibration [U(5)] up to N=58

- Simultaneously, B undergoes change to SU(3)
 → 1st order type I QPT

- What happens to A at N>58, 2_2^+?
 how certain are we at N=56?
"doubly-magic" ^{96}Zr

From W. Witt et al., submitted to EPJA

Really collective vibration, Or Q-deformed/γ-soft?

some levels quite uncertain, from one transfer exp. only

From W. Witt et al., submitted to EPJA

Volker Werner | TU Darmstadt | AG Pietralla | NSD 2019, Venice | 16 May 2019 | Shape transitions between and within Zr isotopes
Summary

- 2_1^+ B(E2) in 98Zr measured to good accuracy
 - 98Zr is still sph./non-collective in its g.s.
 - 2_1^+ is a collective excitation on the “intruder” 0^+

- Type II shape evolution of Togashi/Otsuka confirmed

- Data support interpretation of intertwined QPT
 - 1^{st} order type II (swap of sph./coll. Structures)
 - 1^{st} order type I (sph.\rightarrowdef. Evolution of intruder structure)

- Data base needs to be solidified
 - Structures on ground- and excited bands
 - Need more precise B(E2)s
 - Need Q-moments
Thank you!

Collaboration:

W. Witt, N. Pietralla, T. Beck
for the local analyses and discussion

M. Carpenter, G. Savard, D. Cline, R.V.F. Janssens, C.-Y. Wu, S. Zhu
for CoulEx @ ATLAS / CARIBU / GRETINA / CHICO2

N. Marginean, C. Mihai, S. Pascu, and the IFIN-HH Team
for RDDS @ IFIN Tandem