

Masses & Beta-Decay Spectroscopy of Neutron-Rich Nuclei: Isomers & Sub-shell Gaps with Large Deformation

F.G. Kondev Physics Division, Argonne National Laboratory

Nuclear Structure & Dynamics 2019, May 13-17, Venice, Italy

Introduction

 classical rare-earth region - close to stability - modest deformation - test ground for the development of deformed shell model

P. Moller et al., ADNDT 109-110 (2016) 1

 light rare-earth region
 terra incognita - not easy to get there ...

- prompt-fission studies with GS mostly along the yeast line ...
- ✓ in-flight fission & fragmentation
 - (RIKEN) beta-decay studies ...
- well-deformed n-rich nuclei

Deformed Nuclei & Shell Gaps

Motivation

 basic nuclear data: masses, T_{1/2}, P_n, etc.,
 ✓ need detailed knowledge on nuclear structure to improve predictions for nuclei that won't be observed

M.R. Mumpower et al., J. Phys. G 44 (2017) 034003

 unusual nuclear structure behavior near N= 98 (Gd,Dy,Sm)

CARIBU & ANL

- SF fission of ²⁵²Cf (3.1%) 1.7 Ci 6.310¹⁰ dps
- Gas Catcher, Isobar Separator (m/Δm~10000), MR-TOF (m/Δm~100,000), CPT (m/Δm~1,000,000)
- LE, high-purity & high-quality beams

First operation and mass separation with the CARIEU MR-TOF

Tsviki Y. Hirsh ^{ab,a}, Nancy Paul ^{bd}, Mary Burkey ^{bd}, Ani Aptahamian⁴, Fritz Buchinger⁶, Shane Caldwell¹ Jason A. Clark^b, Anthony F. Levand^b, Lin Ling Ying^b, Scott T. Marley^c, Graeme E. Morgan ^{kb}, Andrew Nystrom ^{bd}, Rodney Orford ^{bd}, Adrian Pérez Galván ^{ba}, John Rohrer^b, Guy Savard ^{kd}, Kumar S. Sharma⁴, Kevin Siegl^{bd}

CARIBU LE area

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elesvier.com/locate/nima

The X-Array and SATURN: A new decay-spectroscopy station for CARIBU

A.J. Mitchell^{a,a}, P.F. Bertone^{b,1}, B. DiGiovine^b, C.J. Lister^a, M.P. Carpenter^b, P. Chowdhury^a, J.A. Clark^b, N. D'Olympia^a, A.Y. Deo^{a,2}, F.G. Kondev^{b,r}, E.A. McCutchan^{b,1}, J. Rohrer^b, G. Savard^{b,d}, D. Seweryniak^b, S. Zhu^b

- X-Array (4 Ge CLOVERs) & 1 LEPS
- large plastic scintillators
- SATURN moving tape station

- direct implantation on the tape
- control the growth & decay times resolving states with different T_{1/2}
- detailed spectroscopy: β-γ-γ—time coin

CPT, MR-TOF & PI-ICR: high purity & mass resolution - identification of long-lived isomers

(selected) Experimental Results

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd ^{160,162}Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N = 98

D. J. Hartley,¹ F. G. Kondev,² R. Orford,^{2,3} J. A. Clark,^{2,4} G. Savard,^{2,5} A. D. Ayangeakaa,^{2,*}
S. Bottoni,^{2,1} F. Buchinger,³ M. T. Burkey,^{2,5} M. P. Carpenter,² P. Copp,^{2,6} D. A. Gorelov,^{2,4}
K. Hicks,¹ C. R. Hoffman,² C. Hu,⁷ R. V. F. Janssens,^{2,‡} J. W. Klimes,² T. Lauritsen,² J. Sethi,^{2,8}
D. Seweryniak,² K. S. Sharma,⁹ H. Zhang,⁷ S. Zhu,² and Y. Zhu⁷

Studies of ¹⁶²Eu₆₃ (N=99)

10.6 (1) s from Gd X-rays Greenwood et al. PRC 35 (1987) 1065 What to expect: **π5/2[413] v1/2[521] configuration Kπ**=3⁻ ground state - no isomers

WS, Nilsson & folded-Yukawa

PHYSICAL REVIEW LETTERS 120, 262701 (2018)

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations

M. Vilen,^{1,*} J. M. Kelly,^{2,†} A. Kankainen,¹ M. Brodeur,² A. Aprahamian,² L. Canete,¹ T. Eronen,¹ A. Jokinen,¹

T. Kuta,² I. D. Moore,¹ M. R. Mumpower,²³ D. A. Nesterenko,¹ H. Penttilä,¹ I. Pohjalainen,¹ W. S. Porter,² S. Rinta-Antila,¹ R. Surman,² A. Voss,¹ and J. Äystö¹

Isotope	Reference	$ME_{RKP}(\text{keV})$	$r = u_{c,ref}/ u_c$	$ME_{JYFL}(\text{keV})$	MEAMERS(keV)	$\Delta M E_{AYEL-AMK16}(\text{keV})$
¹⁶⁰ Nd	¹³⁶ Xe	86429.159(7)	$1.147 \ 366 \ 924(19)$	60210(2)	60470(200)	260(200)
158Nd	¹³⁶ Xe	-86429.159(7)	1.162 132 772(290)	-53897(37)	-54060(200) //	160(200) //
¹⁸⁸ Pm	1X8 Cd	-70689.5(12)	1.000 078 752(9)	-59104(2)	-59089(13)	-15(13)
¹⁶⁰ Pm	¹⁸⁶ Xe	-86429.159(7)	1.176 857 014(130)	-52851(16)	-53000(200)#	149(201)#
¹⁶² Sm	¹³⁶ Xe	-86429.159(7)	1.191 560 914(39)	-54381(5)	-54530(200)#	-149(200)#
162 Fu	136Xe	86429.159(7)	1.191 527 132(28)	-58658(4)	58700(40)	42(40)
100	Dy	-66381.2(8)	1.000.065.633(23)	-56420(4)	-56480(70)	60(70)
¹⁶³ Cd	¹⁶⁰ Dy	-66381.2(8)	$1.000\ 034\ 135(22)$	-61200(4) [^]	-61314(8)	114(9)
¹⁶⁴ Gd	¹⁷¹ Yb	59306.810(13)	0.959 046 522(14)	59694(3)	59770(100)#	76(100)#
¹⁶⁵ Gd	¹⁷¹ Yb	-59306.810(13)	1.068 489 243(23) ^b	-56522(4)	-56450(120)#	-72(120)#
166Gd	¹³⁶ Xe	86429.159(7)	1.220 992 828(29)	54387(4)	54530(200)#	143(200)#
¹⁶⁴ Tb	¹²¹ Yb	-59306.810(13)	$0.959 \times 1473(21)$	-62090(4)	-62080(100)	-10(100)

phase-imaging ion-cyclotron-resonance technique

Studies of ¹⁶²Eu₆₃ (N=99) - cont.

 high-spin β-decaying state - feeding of the I^π=8+ of the K^π=0+ band - inconsistent with the expected π5/2[413] v1/2[521] configuration that would imply I^π=3- for the parent (¹⁶²Eu) Compared to:

- 11.8 (14) s J. Wu et al.
- 10.6 (1) s Greenwood *et al*.

Studies of ¹⁶²Eu (N=99) cont.

ordering of the 1/2[521] and 7/2[633] neutron orbitals D.J. H

Sub-shell gap at N=98 and B₂~0.3

D.G. Burke & G. Lovhoiden, NP A750 (2005) 185 H.J. Jensen et al., Z. Phys. A359 (1997) 127 Md. Asgar et al. PRC95 (2017) 031304(R)

New Development

Decay spectroscopy with Gammasphere

new Decay Data Station at Gammasphere - commissioned December 17-22, 2018 target chamber (WUSL), tape station (LSU) and B- particle detector arrays (ANL)

- flexible selection of different growth & decay cycles
- increased sensitivity for fast-decaying nuclei (down to 100 of ms); resolving isomers
- HEART Hexagonal Array for Triggering
 ✓ 6 EJ-204 plastic scint. & 12 SiPM
 ✓ ε_B=75 (2)% from β-γ singles & coin.
- powerful γ-γ-β-t coincidence device

Commissioning experiment - 146La decay

New LE CARIBU experimental area

ANL tandem was removed in March 2019
services in place and first beam line installed
new experiments expected to start this summer

Outlook & Conclusions

- direct mass measurements in conjunction with detailed B-decay studies are powerful tool to elucidate properties of neutron-rich nuclei - details matter!
- CARIBU produces high-quality LE beams with sufficient yield for **detailed** spectroscopy examples on ¹⁶²Eu, ¹⁶⁰Pm & ¹⁶⁴Tb decay properties, isomers, excitation energies, sub-shell closures ... **limitations** the high background in the LE area a new beam line has been built and will be operational later this year continue exploring the A~160 light rare-earth region
- decay spectroscopy measurements with Gammasphere new moving-tape system & beta-particle detector array - Decay Data Factory - bringing GS into the new LE area & run continuously for ~6 months - a workshop planed in ANL later in the fall