Study of shape evolution around A~100

Ground state deformation from HFB calculations

Rich variety of nuclear shapes

- Rapid variations with (Z,N)
- Oblate and prolate minima → shape coexistence

HFB+GCM(GOA) calculations with Gogny D1S force, J.P. Delaroche et al., PRC 81 (2008)
Motivation

- Evolution of the 2^+_1 excitation energy as a function of neutron number in the $A \sim 100$ region.

- Experimental evidence of shape transition at $N=58-60$.

- Experimental measurements of lifetime to determine transition strengths ($B(E2)$).
The experimental procedure involves the use of a multi-detector setup for fission fragment detection. The setup includes VAMOS and Agata detectors. For VAMOS, the settings are as follows:

- **VAMOS Settings:**
 - 20° rotation
 - Magnetic rigidity $B_p (Mv/q) = 1.1$

The target nucleus is $^{247}_{96}$Cm, and the beam is $^{238}_{92}$U. The intermediate compound nucleus is $^{9}_{4}$Be. The detectors used are Agata, which consists of 35 detectors.
Experimental Procedure

MWPC: Multi-Wire Proportional Counter
MWPPAC: Multi-Wire Parallel Plate Avalanche Counter
DC: Drift Chamber
IC: Ionization Chamber
D: Dipole

Plunger: few ps-100 ps
FATIMA: ~50 ps

VAMOS Settings:
20° rotation
Magnetic rigidity Bp (Mv/q): 1.1

24-LaBr₃ (FATIMA)
Agata (35 detectors)
AGATA is an array composed of high-purity segmented germanium detectors.

Strength of the array:
- Determine the interaction point of γ ray by comparing it to the measured signal shapes.
- Reconstruct the path of a Compton scattered γ ray inside the array.

35 AGATA detectors were used in the present work.

Each AGATA crystal is composed of 36-fold segments.

AGATA project aims at reaching a 4π solid angle.
Raw Data File

Crystal Producer
- Data replay (amplitudes, time,..)

Preprocessing Filter
- Calibrated energy and time Spectra, cross-talk corrections

PSA Filter
- Pulse Shape Analysis

Post-PSA Filter
- Recalibration, neutron damage correction,

Tracking

Merge

S. Ansari

NSD 2019 – 16-05-2019
Cross talk correction

- Electronic cross talk effects are observed in segmented Ge detectors.
- Cross talk correction allows to recover the sum of hit energies.

a) 60Co peaks for sum of all multiplicities

b) Energy difference between absolute and measured energy vs segment multiplicities

Saba Ansari
NSD 2019
16-05-2019
saba.ansari@cea.fr
• Interaction of neutrons with Ge crystals induces lattice defects.

• Lattice defects are more susceptible to trap holes than electrons.

• Neutron damage correction is possible from the knowledge of the interaction position and corrects for the deficiency of the charge collection.
Vamos Analysis

MWPC: Multi-Wire Proportional Counter
MWPPAC: Multi-Wire Parallel Plate Avalanche Counter
DC: Drift Chamber
IC: Ionization Chamber
D: Dipole

MWPC 238U 24-LaBr_3 Agata

Fission fragments
MWPC: Multi-Wire Proportional Counter
MWPPAC: Multi-Wire Parallel Plate Avalanche Counter
DC: Drift Chamber
IC: Ionization Chamber
D: Dipole

Mass separation

Mass distribution
Which isotopes are accessible?

Strongest channel
Recoil Distance Doppler Shift method

\[E_{\gamma} = E_{\gamma} \frac{\sqrt{1-\beta^2}}{1-\beta \cos \theta} \]

- \(E_{\gamma} \): before doppler correction
- \(E_{\gamma_0} \): after doppler correction
- \(\beta = v/c \)
- \(\theta \): angle between recoil and \(\gamma \)

Diagram:

- **Left line:** \(\gamma \) emitted before the degrader.
- **Right line:** \(\gamma \) emitted after the degrader.

Graphs:

- **a)** \(\cos \theta \) vs \(E_{\gamma} \)
- **b)** \(\cos \theta \) vs \(E_{\gamma_0} \)
Differential Decay Curve Method (DDCM)

^{104}Mo

DDCM (singles)

Counts

γ keV

450 µm

780 µm

1170 µm

1755 µm

shifted

un-shifted
Differential Decay Curve Method (DDCM)

\[Q_{ij}(x) = \frac{I_{ij}^u(x)}{I_{ij}^u(x) + I_{ij}^s(x)} \]
Differential Decay Curve Method (DDCM)

\[Q_{ij}(x) = \frac{I_{ij}^u(x)}{I_{ij}^u(x) + I_{ij}^s(x)} \]

\[\tau_i(x) = -\left[v \frac{dQ_{ij}(x)}{dx}\right]^{-1} [Q_{ij}(x) - b_{ij} \sum_h \alpha_{hi} Q_{hi}(x)] \]
Differential Decay Curve Method (DDCM)

\[T(4^+_1) = 35.4(11) \text{ ps} \]
^{104}Mo

DDCM (singles)

- $450 \mu\text{m}$
- $780 \mu\text{m}$
- $1170 \mu\text{m}$
- $1755 \mu\text{m}$

DDCM ($\gamma-\gamma$)

- $450 \mu\text{m}$
- $780 \mu\text{m}$
- $1170 \mu\text{m}$
- $1755 \mu\text{m}$

Results

- $\tau (4^+_1) = 35.4(11) \text{ ps}$
- $\tau (4^+_1) = 41(5) \text{ ps}$
Comparison of AGATA vs EXOGAM for ^{98}Zr

AGATA

- 155 um
- $^{98}\text{Zr} (4^+_1)$
- $^{98}\text{Zr} (6^+_1)$
- 265 um
- 450 um
- 780 um
- 1755 um

EXOGAM

- 265 um
- $^{98}\text{Zr} (2^-_1)$
- 1223 keV

Counts

P. Singh et al., PHYSICAL REVIEW LETTERS 121, 192501 (2018)
Limits of observation (104Zr)

$\tau (4^+_1) = < 90 \text{ ps}$

$T (6^+_1) = 7.7(5) \text{ ps}$
Limits of observation (104Zr)

\[\tau (4^+_1) = < 90 \text{ ps} \]

Possible side-feeding from 4^- state

\[T (6^+_1) = 7.7(5) \text{ ps} \]
Transition Strength

\[B(E2, 4^+_1 \rightarrow 6^+_1) e_b^2 \]

\[B(E2, 4^+_1 \rightarrow 8^+_1) e_b^2 \]

\[98 \text{Zr} \quad 100 \text{Zr} \quad 102 \text{Zr} \quad 104 \text{Zr} \quad 106 \text{Zr} \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \]

\[100 \text{Mo} \quad 102 \text{Mo} \quad 104 \text{Mo} \quad 106 \text{Mo} \quad 108 \text{Mo} \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \]
Transition Strength

\[B(E2; 4^+_1 \rightarrow 6^+_1) e^2 b^2 \]

\[B(E2; 6^+_1 \rightarrow 8^+_1) e^2 b^2 \]

exp - experimental

5DCH - 5DCh model

Zr

Mo

preliminary
Transition Strength

Work in Progress!
Conclusion

- Fusion-Fission Experiment with AGATA & VAMOS

- Confirmation of Previous lifetime
 \[4^+_1 \, ^{98}\text{Zr}, \ 4^+_1 \, ^{102,104}\text{Mo}, \ 6^+_1 \, ^{98,100}\text{Zr}, \ 6^+_1 \, ^{106}\text{Mo} \]

- New lifetimes in \(4^+_1 \) & \(6^+_1 \) \(^{104}\text{Zr}, \ ^{104}\text{Mo} \)

- Potential in Ru, Pd, Sr …

- B(E2) measurements are an important ingredient for Coulomb excitation measurements performed at CARIBU (\(^{104,106}\text{Mo}, \ ^{110}\text{Ru}, \) planned \(^{100}\text{Zr}, ^{112}\text{Ru} \)).

- Work in progress!
THANK YOU