Study of shape evolution around A~100

Ground state deformation from HFB calculations

Rich variety of nuclear shapes
➢ Rapid variations with (Z,N)
➢ Oblate and prolate minima
→ shape coexistence

DE LA RECHERCHE À L'INDUSTRIE

- Evolution of the 2_{1}^{+} excitation energy as a function of neutron number in the A~100 region.
- Experimental evidence of shape transition at N=58-60.
- Experimental measurements of lifetime to determine transition strengths (B(E2)).

Cea Experimental Procedure

Experimental Procedure

DE LA RECHERCHE À L'INDUSTR

📿 Advanced Gamma Tracking Array (AGATA)

AGATA is an array composed of high-purity segmented germanium detectors.

Strength of the array:

- Determine the interaction point of γ ray by comparing it to the measured signal shapes.
- Reconstruct the path of a Compton scattered γ ray inside the array.

35 AGATA detectors were used in the present work

Each AGATA crystal is composed of 36-fold segments

AGATA project aims at reaching a 4π solid angle

16-05-2019

S. Ansari

NSD 2019 - 16-05-2019

AGATA ANALYSIS

Cross talk correction

a) ⁶⁰Co peaks for sum of all multiplicies

b) Energy difference between absolute and measured energy vs segment multiplicites)

- Electronic cross talk effects are observed in segmented Ge detectors.
- Cross talk correction allows to recover the sum of hit energies.

Neutron Damage Correction

- Interaction of neutrons with Ge crystals induces lattice defects.
- Lattice defects are more susceptible to trap holes than electrons.
- Neutron damage correction is possible from the knowledge of the interaction position and corrects for the deficiency of the charge collection.

VAMOS ANALYSIS

S. Ansari

NSD 2019 - 16-05-2019

Credit: P. Singh

Cea Vamos Analysis

27 Vamos Analysis

MWPC: Multi-Wire Proportional Counter MWPPAC: Multi-Wire Parallel Plate Avalanche Counter DC: Drift Chamber IC: Ionization Chamber D: Dipole

Which isotopes are accessible?

DE LA RECHERCHE À L'INDUSTRIE

NSD 2019

Cea Recoil Distance Doppler Shift method

$$E_{\gamma o} = E_{\gamma} \frac{\sqrt{1-\beta^2}}{1-\beta \cos\theta}$$

- E_{γ} : before doppler correction
- E_{γ_0} : after doppler correction
- β=v/c
- θ : angle between recoil and γ

a) $\cos\theta$ vs E_{γ} **b)** $\cos\theta$ vs E_{γ_0}

- \rightarrow Left line: γ emitted before the degrader.
- \rightarrow Right line: γ emitted after the degrader.

16-05-2019

Differential Decay Curve Method (DDCM)

¹⁰⁴Mo

Cea Differential Decay Curve Method (DDCM)

¹⁰⁴Mo

$$Q_{ij}(x) = \frac{I_{ij}^{u}(x)}{I_{ij}^{u}(x) + I_{ij}^{s}(x)}$$

Cea Differential Decay Curve Method (DDCM)

¹⁰⁴Mo

$$Q_{ij}(x) = \frac{I_{ij}^{u}(x)}{I_{ij}^{u}(x) + I_{ij}^{s}(x)}$$

$$\tau_{i}(x) = -\left[v\frac{dQ_{ij}(x)}{dx}\right]^{-1}\left[Q_{ij}(x) - b_{ij}\sum_{h}\alpha_{hi}Q_{hi}(x)\right]$$

NSD 2019

saba.ansari@cea.fr

Cea Differential Decay Curve Method (DDCM)

¹⁰⁴Mo

Differential Decay Curve Method (DDCM)

NSD 2019

DE LA RECHERCHE À L'INDUSTRI

Cea Comparison of AGATA vs EXOGAM for 98Zr

Saba Ansari

NSD 2019

16-05-2019

Cea Limits of observation (¹⁰⁴Zr)

NSD 2019

saba.ansari@cea.fr

DE LA RECHERCHE À L'INDU

Cea Limits of observation (¹⁰⁴Zr)

623 **Transition Strength**

Page 17

$\mathbb{C}\mathbb{Z}$ **Transition Strength**

Page 18

DE LA RECHERCHE À L'INDUSTRIE

Cea Transition Strength

Saba Ansari

NSD 2019

16-05-2019

Fusion-Fission Experiment with AGATA & VAMOS

- Confirmation of Previous lifetime 4⁺₁ ⁹⁸Zr, 4⁺₁ ^{102,104}Mo, 6⁺₁ ^{98,100}Zr, 6⁺₁ ¹⁰⁶Mo
 New lifetimes in 4⁺₁ & 6⁺₁ ¹⁰⁴Zr, ¹⁰⁴Mo
- → Potential in Ru, Pd, Sr ...
- →B(E2) measurements are an important ingredient for Coulomb excitation measurements performed at CARIBU (104,106Mo, 110Ru, planned 100Zr,112Ru).
- → Work in progress!

DE LA RECHERCHE À L'INDUSTRIE

UiO **Universitetet i Oslo**

dépasser les frontières

THANK YOU

University of Brighton

ipul

*

Science & Technology Facilities Council

