Chiral three-body force and monopole properties of shell-model Hamiltonian

Tokuro Fukui¹,

L. De Angelis¹, Y. Z. Ma², L. Coraggio¹, A. Gargano¹, N. Itaco^{1,3}, and F. R. Xu²

¹Istituto Nazionale di Fisica Nucleare, Sezione di Napoli ²School of Physics, Peking University ³Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli"

T. Fukui *et al.*, Phys. Rev. C **98**, 04430 (2018). Y. Z. Ma *et al.*, arXiv:1812.03284.

15/March/2019

Shell model and density functional theory

Configurations

Example of realistic shell model (RSM)

- Shell model with chiral effective field theory
 → Many-body force on an equal footing
- S. Weinberg, Phys. A 96, 327 (1979).
- R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).

RSM and 3NF | RSM Hamiltonian

3NF contribution to RSM

RSM Hamiltonian needs to be revised Specifically
 due to 3-nucleon force (3NF).

A. P. Zuker, Phys. Rev. Lett. 90, 042502 (2003).

cf.) Oxygen dripline and 3NF

T. Otsuka et al., Phys. Rev. Lett., 105, 032501 (2010).

The 3NF accounts for the oxygen dripline (²⁴O).

Fujita-Miyazawa 3NF

Monopole Hamiltonian

Shell evolution on *fp*-shell and RSM J. D. Holt *et al.*, Phys. Rev. 90, 024312 (2014).

A crucial role played by 3NF (Chiral N²LO) for Ca isotopes.

3NF contribution to monopole Hamiltonian?

Shell evolution on *fp*-shell and RSM J. D. Holt *et al.*, Phys. Rev. 90, 024312 (2014).

A crucial role played by 3NF (Chiral N²LO) for Ca isotopes.

- We focus on the monopole contribution induced by the chiral N²LO 3NF. \rightarrow Shell evolution in *fp*-shell nuclei.
- We develop **our own code** for 3-body matrix elements (MEs) for RSM inputs.
 - \rightarrow Benchmark test for *p*-shell nuclei.

Chiral 3-body ME | New approach for 2π term

3-body ME with nonlocal regulator

Pioneering works

- Center-of-mass separation A. Nogga *et al.*, Phys. Rev. C 73, 064002 (2006).
- Antisymmetrization

P. Navrátil et al., Phys. Rev. C 61, 044001 (2000).

 $\bigcirc c_D$ and c_E terms

P. Navrátil, Few-Body Syst. 41, 117 (2007).

Chiral N²LO 3NF

Our new formalism

Triple-fold multipole expansion for 2π term.

T. Fukui et al., Phys. Rev. C 98, 04430 (2018).

Framework of RSM calculations | Numerical details

Low-energy constants

2NF: $N^{3}LO$ D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

3NF: N²LO P. Navrátil *et al.*, Phys. Rev. Lett. **99**, 042501 (2007).

Benchmark calculations *p*-shell nuclei

Comparison with ab initio no-core shell model (NCSM)

- RSM and NCSM agree with each other for low-lying states.
- Significant 3NF effect can be seen.

NCSM

P. Navrátil *et al.*,Phys. Rev. Lett. **99**, 042501 (2007).

Benchmark calculations *p*-shell nuclei

Comparison with ab initio no-core shell model (NCSM)

Ground-state energies

Monopole interaction

Monopole interaction $v_{ab}^{(\lambda=0)}$

= *J*-averaged 2-body interaction

$$v_{ab}^{(\lambda=0)} = \frac{\sum_{J} (2J+1) \left\langle ab; J \, \middle| \, V \, \middle| \, ab; J \right\rangle}{\sum_{J} (2J+1)}$$

 $v_{ab}^{(\lambda=0)}$ = Effective single-particle energy (ESPE) ε_{a}^{\prime} = Evolved single-particle energy $\varepsilon_{a} \xrightarrow{v_{ab}^{(\lambda=0)}} \varepsilon_{a}^{\prime}$ Monopole-Hamiltonian ME = $\varepsilon_{a} + \varepsilon_{b} + v_{ab}^{(\lambda=0)}$

Spherical mean field

Monopole interaction *p*-shell nuclei

9

ESPEs

Ca isotopes

11

Ca isotopes

12

Ni isotopes

12

Ni isotopes

ESPEs relevant for Ca isotopes

O Very small difference from 2NF to 2NF + 3NF.

ESPEs relevant for Ni isotopes

Summary

3-body MEs with nonlocal regulator

$$\left\langle \left[\left[\bullet \bullet \right] \bullet \right]_{JT} \middle| V_{3N} \middle| \left[\left[\bullet \bullet \right] \bullet \right]_{JT} \right\rangle_{A}$$

Benchmark test for *p*-shell

Monopole properties of fp-shell

→ Our RSM calculations with 3NF are satisfactorily comparable to the *ab initio* results.

T. Fukui et al., Phys. Rev. C 98, 04430 (2018).

→ The 3NF-induced monopole Hamiltonian is essential to explain the measured shell evolution.

Y. Z. Ma et al., arXiv:1812.03284.

Perspectives

Extension of theoretical framework

- Contribution of the $g_{9/2}$ orbit
- Beyond 1st-order contribution

Study of neutrinoless double β decay

RSM calculations with chiral 3NF for ⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe, etc.

3NF in open quantum system

Gamow shell model calculations with chiral 3NF.