IV International Conference on Nuclear Structure and Dynamics · NSD2019 Venice, Italy, May 13 – 17, 2019

Skyrme functional with tensor terms from ab initio calculations of neutron-proton drops

Shihang Shen (申时行)

Dipartimento di Fisica, Università degli Studi di Milano INFN, Sezione di Milano

Collaborators: Gianluca Colò and Xavier Roca-Maza

Nuclear Energy Density Functional

Nuclear energy density functional (EDF) is an important tool in nuclear physics M. Bender and P.-h. Heenen, Rev. Mod. Phys. 75, 121 (2003)

X.W. Xia et al. At Data Nucl. Data Tables, 2018, 121–122: 1

- Open questions still exist regarding current functionals:
 - Symmetry energy M. Baldo and G. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)
 - Tensor force H. Sagawa and G. Colò, Prog. Part. Nucl. Phys. 76, 76 (2014)
 - **•**

Tensor Force

> Experimental facts for tensor force in nucleon-nucleon (NN) interaction:

- Quadrupole moment of deuteron
- Nonvanishing transition amplitude from
 L = J 1 to L = J + 1 in NN scattering

Tensor force in nuclear medium (EDF): still in debate.

```
R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)
```

$$V_T = f(r)S_{12},$$

$$S_{12} = 3(\vec{\sigma}_1 \cdot \hat{r})(\vec{\sigma}_2 \cdot \hat{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

H. Sagawa and G. Colò, *Prog. Part. Nucl. Phys.* **76**, 76 (2014)

A. V. Afanasjev, E. Litvinova, Phys. Rev. C 92, 044317 (2015)

Let ab initio calculation (without PVC) tells us the tensor

Ab initio Calculations

.. ...

- > ab initio: describing nucleus from underlying NN interactions
- Brueckner-Hartree-Fock (BHF) theory B. Day, Rev. Mod. Phys. 39, 719 (1967)
- self-consistent Green's function W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
- nuclear lattice effective field theory D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)
- no core shell model B. R. Barrett, P. Navrátil, J. P. Vary, PPNP 69, 131 (2013)
- coupled-cluster theory G. Hagen, et al., Rep. Prog. Phys. 77, 096302 (2014)
- quantum Monte Carlo method J. Carlson, et al., RMP 87, 1067 (2015)
- in medium similarity renormalization group H. Hergert, et al., Phys. Rep. 621, 165 (2016)

Pseudodata from *ab initio* Calculations

Relativistic Brueckner-Hartree-Fock theory with Bonn A interaction for neutron drops.

Spin-orbit splitting of 1d orbital as a function of neutron numbers

S. Shen, *et al.*, *PLB* **778**, 344 (2018) S. Shen, *et al.*, *PRC* **97**, 054312 (2018)

- The SO splitting decreases as the next higher j' = j' > = l' + 1/2 orbit is filled, and recover when next lower j' = j' < = l' 1/2 is filled.
- Such pattern of SO splitting is not obvious in functionals without tensor force (DD-ME2, PKDD) and can be reproduced by functional with tensor force (PKO1).

PRESENT WORK

To develop new skyrme functional with tensor force guided by RBHF study in neutron(-proton) drops.

Relativistic Brueckner-Hartree-Fock Theory

Starting point: Bonn interaction R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)
The interaction Lagrangians are defined as

$$\begin{split} \mathscr{L}_{NNpv} &= -\frac{f_{ps}}{m_{ps}} \bar{\psi} \gamma^5 \gamma^{\mu} \psi \partial_{\mu} \varphi^{(ps)}, \\ \mathscr{L}_{NNs} &= g_s \bar{\psi} \psi \varphi^{(s)}, \\ \mathscr{L}_{NNv} &= -g_v \bar{\psi} \gamma^{\mu} \psi \varphi^{(v)}_{\mu} - \frac{f_v}{4M} \bar{\psi} \sigma^{\mu\nu} \psi \left(\partial_{\mu} \varphi^{(v)}_{\nu} - \partial_{\nu} \varphi^{(v)}_{\mu} \right) \,. \end{split}$$

- Bosons to be exchanged include σ, δ (scalar); ω, ρ (vector); η, π (pseudoscalar).
- Coupling constants are determined by NN scattering and deuteron properties R. Machleidt, *Adv. Nucl. Phys.* **19**, 189 (1989).

Relativistic Brueckner-Hartree-Fock Theory

K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud, Phys. Rev. 95, 217 (1954)

Bethe-Goldstone equation

bare interaction in the free space

effective interaction in the nuclear medium

H. A. Bethe and J. Goldsteon, Proc. R. Soc. A 238, 551 (1957)

$$\langle ab|G(W)|cd\rangle = \langle ab|V|cd\rangle + \sum_{mn} \langle ab|V|mn\rangle \frac{Q(m,n)}{W - e_m - e_n} \langle mn|G(W)|cd\rangle$$

• *Q* is the Pauli operator which forbids the states being scattered below Fermi surface.

$$Q = \begin{cases} 1, & e_m, e_n > e_F \\ 0, & e_m \le e_F \text{ or } e_n \le e_F \end{cases}$$

• *W* is the so-called starting energy.

Relativistic Brueckner-Hartree-Fock Theory

Relativistic Hartree-Fock (RHF) equation in complete basis, for details, e.g. W.-H. Long, N. Van Giai, and J. Meng, PLB 640, 150 (2006)

$$\sum_{j} \left(T_{ij} + U_{ij} \right) D_{ja} = \varepsilon_a D_{ia},$$

where D are the expansion coefficients:

$$|a\rangle = \sum_{i} D_{ia} |i\rangle.$$

 $U_{ii} = \sum_{i=1}^{A} \langle ic | \bar{G}(W) | jc \rangle$

$$U_{\rm HO}(\mathbf{r}) = \frac{1}{2}M\omega^2 r^2.$$

RBHF total energy

external field for neutron(-proton) drops

$$E = \sum_{a}^{A} \langle a|T|a \rangle + \frac{1}{2} \sum_{ab}^{A} \langle ab|\bar{G}(W)|ab \rangle.$$

for more detail, see

See S. Shen, et al., Chin. Phys. Lett. 33, 102103 (2016)
S. Shen, et al., PRC 96, 014316 (2017)
S. Shen, et al., PLB 781, 227 (2018)

Skyrme Functional

Skyrme effective interaction D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)

$$\begin{split} V(\mathbf{r}_{1},\mathbf{r}_{2}) &= t_{0}(1+x_{0}P_{\sigma})\delta(\mathbf{r}) + \frac{1}{2}t_{1}(1+x_{1}P_{\sigma})\left[\mathbf{P}^{\prime2}\delta(\mathbf{r}) + \delta(\mathbf{r})\mathbf{P}^{2}\right] + t_{2}(1+x_{2}P_{\sigma})\mathbf{P}^{\prime}\cdot\delta(\mathbf{r})\mathbf{P}, \\ &+ \frac{1}{6}t_{3}(1+x_{3}P_{\sigma})\rho^{\gamma}(\mathbf{R})\delta(\mathbf{r}) + iW_{0}(\sigma_{1}+\sigma_{2})\cdot\left[\mathbf{P}^{\prime}\times\delta(\mathbf{r})\mathbf{P}\right] + V_{T}(\mathbf{r}_{1},\mathbf{r}_{2}), \\ V_{T}(\mathbf{r}_{1},\mathbf{r}_{2}) &= \frac{T}{2}\left\{\left[(\sigma_{1}\cdot\mathbf{k}^{\prime})(\sigma_{2}\cdot\mathbf{P}^{\prime}) - \frac{1}{3}(\sigma_{1}\cdot\sigma_{2})\mathbf{P}^{\prime2}\right]\delta(\mathbf{r}) + \delta(\mathbf{r})\left[(\sigma_{1}\cdot\mathbf{P})(\sigma_{2}\cdot\mathbf{P}) - \frac{1}{3}(\sigma_{1}\cdot\sigma_{2})\mathbf{P}^{2}\right]\right\} \\ &+ U\left\{(\sigma_{1}\cdot\mathbf{P}^{\prime})\delta(\mathbf{r})(\sigma_{2}\cdot\mathbf{P}) - \frac{1}{3}(\sigma_{1}\cdot\sigma_{2})\left[\mathbf{P}^{\prime}\cdot\delta(\mathbf{r})\mathbf{P}\right]\right\}, \end{split}$$

Hartree-Fock equation

$$\left[-\frac{\hbar^2}{2M}\nabla^2 + U_q(\mathbf{r})\right]\psi_k(\mathbf{r}) = e_k\psi_k(\mathbf{r}),$$

$$U_q(\mathbf{r}) = U_q^{(c)}(\mathbf{r}) + \delta_{q,1} U_C(\mathbf{r}) + \mathbf{U}_q^{(s.o.)}(\mathbf{r}) \cdot (-i) (\nabla \times \sigma).$$

$$U_{\rm HO}(\mathbf{r}) = \frac{1}{2}M\omega^2 r^2.$$

external field for neutron(-proton) drops

central term, Coulomb term, spin-orbit term

Skyrme Functional

Spin-orbit term

$$\mathbf{U}_{q}^{(\text{s.o.})}(\mathbf{r}) = \frac{1}{2} \left[W_0 \nabla \rho + W_0' \nabla \rho_q \right] + \left[\alpha \mathbf{J}_q + \beta \mathbf{J}_{1-q} \right],$$

F. Stancu, D. M. Brink, and H. Flocard, Phys. Lett. B 68, 108 (1977)D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)

$$\rho_{q}(\mathbf{\vec{r}}) = \sum_{i,\sigma} |\phi_{i}(\mathbf{\vec{r}},\sigma,q)|^{2},$$

$$\mathbf{\vec{J}}_{q}(\mathbf{\vec{r}}) = (-i) \sum_{i,\sigma,\sigma'} \phi_{i}^{*}(\mathbf{\vec{r}},\sigma,q) [\vec{\nabla}\phi_{i}(\mathbf{\vec{r}},\sigma',q) \times \langle \sigma | \vec{\sigma} | \sigma' \rangle]$$

J(r) -> 0 for spin-saturated system (j> and j< both occupied),
 largest for spin-unsaturated system (j> occupied and j< empty).

where

Fitting protocol is based on the successful SAMi functional X. Roca-Maza, G. Colò, and H. Sagawa, Phys. Rev. C 86, 031306 (2012) Set of data and pseudodata:

- Binding energies and charge radii of ⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ¹³²Sn, and ²⁰⁸Pb.
- Spin-orbit splittings of 40 Ca (π 1d), 90 Zr (π 1g), 208 Pb (π 2f)
- Relative change of spin-orbit splittings from neutron-proton drops ⁴⁰20 (Z = 20, N = 20) to ⁴⁸20 (Z = 20, N = 28) calculated by RBHF theory using Bonn A interaction.
- Total energy of neutron drops with neutron number N = 8, 20, 40, 50 calculated by RBHF theory
 S. Shen, et al., PLB 778, 344 (2018)
 S. Shen, et al., PRC 97, 054312 (2018)
- We also keep the empirical hierarchy of the spin G₀ and spin-isospin G₀' Landau-Migdal parameters: G₀' > G₀ > 0.

New functional is named as SAMi-T

S. Shen, G. Colò, and X. Roca-Maza, Phys. Rev. C 99, 034322 (2019)

Ground-State Properties – Experimental Data

➢ Binding energy, charge radius, and proton spin-orbit splitting ∆E s.o. (level) of several doubly magic spherical nuclei calculated by using SAMi-T

El.	A	$B \; ({\rm MeV})$	B^{expt} (MeV)	$r_c \ (fm)$	r_c^{expt} (fm)
Ο	16	127.78(33)	127.62	2.774(4)	2.699
Ca	40	343.74(52)	342.05	3.477(3)	3.478
	48	415.32(50)	415.99	3.515(3)	3.477
Ni	56	468.73(1.06)	483.99	3.784(4)	
	68	591.27(56)	590.41	3.901(4)	
Zr	90	783.35(46)	783.89	4.263(3)	4.269
Sn	100	812.91(1.18)	824.79	4.480(5)	
	132	1100.80(54)	1102.85	4.714(4)	4.709
Pb	208	1637.81(67)	1636.43	5.479(5)	5.501

- χ^2 of SAMi-T are 9.7, 20.1, 11.4 for binding, radius, and SO splitting, respectively.
- Those of SAMi are 32.5, 13.4, 19.0.

Ground-State Properties – Pseudodata

Neutron and proton 1p and 1d spin-orbit splittings of neutron-proton drops calculated by SAMi-T, in comparison with results of SAMi functional and RBHF theory using the Bonn A interaction.

	α	β
SAMi-T	73.0	101.8
SAMi	101.6	31.5

• The relative change of SO splittings in neutron-proton drops by RBHF can be well fitted by SAMi-T.

Excited-State Properties – Gamow-Teller

Gamow-Teller resonance (GTR) strength function for ⁴⁸Ca, ⁹⁰Zr, and ²⁰⁸Pb calculated by SAMi-T with and without tensor using self-consistent Hartree-Fock plus Random Phase Approximation.

Exp.

K. Yako, et al., Phys. Rev. Lett. **103**, 012503 (2009)
T. Wakasa, et al., Phys. Rev. C **55**, 2909 (1997)
T. Wakasa, et al., Phys. Rev. C **85**, 064606 (2012)

- Tensor force has little influence.
- SAMi-T gives very good description for the three selected nuclei, both lower and higher peaks.

Excited-State Properties – Spin-Dipole

Spin-dipole resonance (SDR) strength function in the τ– channel for ²⁰⁸Pb.

$$V_{\text{TE}}^{(\lambda)} = -\frac{5}{12}T \begin{cases} 1\\ -1/6\\ 1/50 \end{cases} |\langle p||\hat{O}_{1,\lambda}||h\rangle|^2$$

for $\lambda = \begin{cases} 0^- \\ 1^- \\ 2^- \end{cases}$. C. L. Bai, *et al.*, Phys. Rev. Lett. **105**, 072501 (2010)

- Results of SAMi-T without tensor is similar to those of SAMi.
- Tensor force is important in improving the description of J^π = 1⁻ channel, and improving the total SDR. Consistent with the finding in C. L. Bai, *et al.*, Phys. Rev. Lett. **105**, 072501 (2010)
- Without fitting tensor to SDR, SAMi-T improves the results automatically.

Exp. T. Wakasa, et al., Phys. Rev. C 85, 064606 (2012)

Summary

- New Skyrme functional SAMi-T has been developed with tensor force guided by relativistic Brueckner-Hartree-Fock calculations of neutron-proton drops.
- Nuclear ground state properties such as binding energy, radius, and spin-orbit splittings can be well fitted.
- Excited properties like giant monopole, giant dipole, Gamow-Teller, and spindipole resonance can be well described by SAMi-T, especially the description for SDR is improved by the tensor force.

Perspectives

- □ To test the new functional in more studies.
- □ To study the effect of particle vibration coupling.

THANK YOU!

	Value	Error		Value		
t_0	$-2199.38 \text{ MeV fm}^3$	372.	00	$0.164(1) \text{ fm}^{-3}$		
t_1	533.036 MeV fm^5	20.7	Р0 ео	-16.15(3) MeV		
t_2	$-88.1692 \text{ MeV fm}^5$	12.6	m_{rg}^*/m	0.634(19)		
t_3	$11293.5 \text{ MeV fm}^{3+3\gamma}$	2014.	m_{1V}^*/m	0.625(122)		
x_0	0.514710	0.178	J	29.7(6) MeV		
x_1	-0.531674	0.593	Ĺ	46(12) MeV		
x_2	-0.026340	0.117	K_0	244(5) MeV		
$\overline{x_3}$	0.944603	0.481	G_0	0.08 (fixed)		
γ	0.179550	0.047	G'_0	0.29 (fixed)		
W_0	$130.026 { m ~MeV fm}^5$	8.2	0			
W'_0	$101.893 { m ~MeV ~fm}^5$	18.6				
α_T	$-39.8048 { m ~MeV ~fm}^5$	39.^_				
β_T	$66.6505~{\rm MeV}~{\rm fm}^5$	39.		Value (σ)		Value (σ)
		$\overline{t_0}$	_	-1877.75(75) MeV fi	$m^3 \rho_{\infty}$	$0.159(1) \mathrm{fm}^{-3}$
		t_1				
		t	1	475.6(1.4) MeV fm ⁵	e_{∞}	-15.93(9) MeV
		t t	1	475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ⁵	e_{∞}	-15.93(9) MeV 0.6752(3)
		t t	1 2 3 1(475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 219.6(7.6) MeV fm ³	e_{∞} $f_{\rm IS}$ e_{∞} $m_{\rm IS}^*$ $m_{\rm IS}^*$ $m_{\rm IV}^*$	-15.93(9) MeV 0.6752(3) 0.664(13)
		t t t	1 2 3 1(475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 0219.6(7.6) MeV fm ³ 0.320(16)	e_{∞} f_{IS} m_{IS}^* m_{IV}^* J	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV
		t t t x x	1 2 3 1(0	475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 0219.6(7.6) MeV fm ³ 0.320(16) -0.532(70)	e_{∞} E^{5} $m_{\rm IS}^{*}$ $m_{\rm IV}^{*}$ $M_{$	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV 44(7) MeV
		t t t x x x x	1 2 3 1(0 1 2	475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 0219.6(7.6) MeV fm ³ 0.320(16) -0.532(70) -0.014(15)	e_{∞} $m_{\rm IS}^{5}$ $m_{\rm IS}^{*}$ $m_{\rm IV}^{*}$ J L K_{∞}	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV 44(7) MeV 245(1) MeV
		t t t x x x x x x x	1 2 3 1(0 1 2 3	475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 0219.6(7.6) MeV fm ³ 0.320(16) -0.532(70) -0.014(15) 0.688(30)	$egin{array}{cccc} & e_{\infty} & & & & & & & & & & & & & & & & & & &$	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV 44(7) MeV 245(1) MeV 0.15 (fixed)
		t t t x x x x x W	1 2 3 1(0 1 2 3 70	475.6(1.4) MeV fm ⁵ -85.2(1.0) MeV fm ³ 0219.6(7.6) MeV fm ³ 0.320(16) -0.532(70) -0.014(15) 0.688(30) 137(11)	$egin{array}{cccc} & e_{\infty} & & & & & & & & & & & & & & & & & & &$	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV 44(7) MeV 245(1) MeV 0.15 (fixed) 0.35 (fixed)
		t t t x x x x W W	$1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 7 \\ 0 \\ 7' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{r} 475.6(1.4) \mathrm{MeV} \mathrm{fm}^{5} \\ -85.2(1.0) \mathrm{MeV} \mathrm{fm}^{3} \\ 0219.6(7.6) \mathrm{MeV} \mathrm{fm}^{3} \\ 0.320(16) \\ -0.532(70) \\ -0.014(15) \\ 0.688(30) \\ 137(11) \\ 42(22) \end{array}$	$egin{array}{cccc} & e_{\infty} & & & & & & & & & & & & & & & & & & &$	-15.93(9) MeV 0.6752(3) 0.664(13) 28(1) MeV 44(7) MeV 245(1) MeV 0.15 (fixed) 0.35 (fixed)

Ground State Properties – Pseudodata (Energy)

 (Left) Energy of neutron drops. (Right) Equation of state of symmetric nuclear matter and pure neutron matter.

• SAMi-T slightly improves the description of pure neutron system than SAMi.

Skyrme Functional

Spin-orbit term

$$\mathbf{U}_{q}^{(\text{s.o.})}(\mathbf{r}) = \frac{1}{2} \left[W_0 \nabla \rho + W_0' \nabla \rho_q \right] + \left[\alpha \mathbf{J}_q + \beta \mathbf{J}_{1-q} \right],$$

F. Stancu, D. M. Brink, and H. Flocard, Phys. Lett. B 68, 108 (1977)

where

 $\rho_{q}(\mathbf{\tilde{r}}) = \sum_{i,\sigma} |\phi_{i}(\mathbf{\tilde{r}},\sigma,q)|^{2},$ D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972) $\mathbf{\tilde{J}}_{q}(\mathbf{\tilde{r}}) = (-i) \sum_{i,\sigma,\sigma'} \phi_{i}^{*}(\mathbf{\tilde{r}},\sigma,q) [\mathbf{\tilde{\nabla}}\phi_{i}(\mathbf{\tilde{r}},\sigma',q) \times \langle \sigma | \mathbf{\tilde{\sigma}} | \sigma' \rangle].$

- J(r) -> 0 for spin-saturated system (j> and j< both occupied),
 largest for spin-unsaturated system (j> occupied and j< empty).
- Tensor force make contribution through the J² term, which is mixed with the contribution from central term

$$\alpha = \alpha_c + \alpha_T, \quad \beta = \beta_c + \beta_T.$$

$$\begin{aligned} \alpha_c &= \frac{1}{8}(t_1 - t_2) - \frac{1}{8}(t_1 x_1 + t_2 x_2), \quad \alpha_T = \frac{5}{12}U, \\ \beta_c &= -\frac{1}{8}(t_1 x_1 + t_2 x_2), \quad \beta_T = \frac{5}{24}(T + U). \end{aligned}$$

