

IV International Conference on

Nuclear Structure and Dynamics • NSD2019

May 13-17, 2019 • Centro Culturale Don Orione Artigianelli, Venice • Italy

Isospin influence on the IMF production at low energy

Sara Pirrone NEWCHIM – ISODEC collaboration

INFN - Sezione di Catania - Italy

Physics Case and Context

Heavy-ion collisions ($A_{CN} = 80-140$) with stable and radioactive beams

Low energy regime E/A ≤ 15 MeV/A, dominated by Compound Nucleus formation and decay, in competition with binary processes (DIC, Quasi-elastic)

Exploring the effects of the <u>isospin</u> and of the neutron enrichment in the entrance channel, on the <u>reaction</u> <u>mechanism</u>, on the <u>decay process</u> and on the <u>formation of</u> <u>complex fragments</u> **Physics Case and Context**

⁷⁸Kr + ⁴⁰Ca → ¹¹⁸Ba^{*} "n-poor" ⁸⁶Kr + ⁴⁸Ca → ¹³⁴Ba^{*} "n-rich"

$\mathbf{E} = 10 \, \mathrm{AMeV}$

	¹¹⁸ Ba	¹³⁴ Ba	
E*(MeV)	215	270	
V _B (MeV)	90	87	
(N/Z) _{tot}	1.11	1.39	
AN-16 noutrons			

Study of the influence of isospin on the formation and emission of the Intermediate Mass Fragment (IMF Z≥3)

CULIUIIS

CHIMERA@LNS

A. Pagano et al., NPA681 (2001) 331

CHIMERA - Charge Heavy Ion Mass and Energy Resolving Array

Dynamical range : from fusion, fusion-fission to multifragmentation reactions (TANDEM & CYCLOTRON Beams)

Physics Case and Context

Fragments production from two reaction mechanisms:

Total Kinetic Energy of the binary system as a function of the emission angle in the cm, for ⁷⁸Kr+⁴⁰Ca (analogue result for n-rich system)

Value in agreement with a compilation of C. Beck et al. on fission energy release (C. Beck, A.S. de Toledo, Phys. Rev. C 53, (1996))

Capture process: CN formation and decay

G. Politi et al., JPS Conf. Proc. 6 (2015) 030082
B. Gnoffo, Il Nuovo Cimento C39 (2016) 275
S. Pirrone et al., Eur. Phys. J. A (2019) 55, 22

IMF Charge Distribution (n-poor n-rich systems)

- Fragments production globally favored for n-poor system
- Odd-even staggering behaviour, more pronounced in the n-poor system

In agreement with: I. Lombardo et al., PRC 84 (2011) 024613 G. Casini et al., PRC 86 (2012) 011602

 Charge distribution not symmetric with respect to Z_{CN}/2=28→ presence of dynamical process

IMF Charge Distribution (energy dependence)

Comparison for n-poor system at 5.5 MeV/A * and 10 MeV/A:

- Larger cross section and great production of IMF at higher energy

*G. Ademard et al., Phys. Rev. C 83, 054619 (2011) S. Pirrone et al., Eur. Phys. J. A (2019) 55, 22

Angular distributions of fragments in CM frame

- 1/sin9 behavior, expected for a production via a long lived system -> fission like mechanism from equilibrated source
- Z > 28 stronger contribution at smaller angles, confirming a not fully equilibrated binary mechanism

Further information from Complete Events

 $\begin{array}{ll} multiplicity \geq 2 & 0.8 \ M_{CN} \leq \ M_{tot} \leq 1.1 \ M_{CN} & 0.6 \leq p_{tot}/p_{beam} \leq 1 \\ \text{Correlation between fragment mass and parallel velocity} \end{array}$

Evaporation Residues and Fission Like fragments are evident in both systems

Cross sections measurements

	σ_{ER}	σ_{FL}	σ_{fus}	σ^{qp}_{reac}
	(mb)	(mb)	(mb)	(mb)
$^{78}\mathrm{Kr}\mathrm{+}^{40}\mathrm{Ca}$	455 ± 70	$850{\pm}120$	1305 ± 190	2390 ± 250
$\rm ^{86}Kr+ ^{48}Ca$	400 ± 60	530 ± 85	$930{\pm}145$	2520 ± 260

S. Pirrone et al., Eur. Phys. J. A (2019) 55, 22

- Fusion-Evaporation process is comparable for the two systems
- Fission-Like process prevails for the n-poor system
- Difference σ_{Reac} σ_{Fus} more pronounced for the n-rich system (more DIC)

Damped process: DIC followed by PL break-up

P. Russotto et al., Phys. Rev C91, 014610 (2015) B.Gnoffo et al. , IL NUOVO CIMENTO 41 C (2018) 177

Dynamical and statistical PL break-up @35 MeV/A

System	N/Z Projectile	N/Z target	N/Z compound
¹²⁴ Sn+ ⁶⁴ Ni	1.48	1.29	1.41
¹²⁴ Xe+ ⁶⁴ Ni	1.30	1.29	1.29
¹²⁴ Xe+ ⁶⁴ Zn	1.30	1.13	1.24
¹¹² Sn+ ⁵⁸ Ni	1.24	1.07	1.18

We are able to select the PL Break-up mechanism, and to distinguish the statistical and dynamical components

Dynamic contribution is favoured for n-rich systems

Results are independent from size effects

P. Russotto et al., Phys. Rev C91, 014610 (2015) P. Russotto et al., submitted to Eur. Phys. J. A

Projectile Break-Up in ⁷⁸Kr + ⁴⁰Ca and ⁸⁶Kr + ⁴⁸Ca at 10 MeV/A

Selection of events with 3 fragments (IMF, $Z \ge 3$)

Mass A versus parallel velocity V_{par} of Fragments

Break-up of the CN fission-slow fragment

Break-up of the Projectile-Like-Fragment

Among the different combinations, a kinematical method is used to select only fragments produced in PL Break-up

«Dynamic Nature» of PL Break-Up mechanism

9prox, angle between the two PL Break-Up fragments, A_H and A_L

Preliminary results

 $\begin{tabular}{c} \hline \hline Cos \vartheta_{prox} & distribution & of & the & PL & BreakUp \\ fragments & for & different & value & A_{\rm H}/A_{\rm L,} & for \\ \hline \end{tabular}^{78} {\rm Kr} + {}^{40}{\rm Ca} & {\rm and} & {}^{86}{\rm Kr} + {}^{48}{\rm Ca} \\ \hline \end{tabular}$

Presence of two components, one isotropic, coming from relaxed process, and the other one with aligned fragments, suggesting dynamical effects. Dynamical component prevails for the n-rich system, as in the case @35 MeV/A

Conclusions

Main results of the analysis on the IMF production and isospin dependence in the ⁷⁸Kr+⁴⁰Ca and ⁸⁶Kr+⁴⁸Ca at 10 MeV/A have been presented.

IMF coming from Capture Process, Fusion-Fission and Fusion Evaporation decay mode

IMF coming from Damped Collision, PL BreakUp, (kinematical method)

Evidence of Dynamical effects, more pronounced for the n-rich system, ⁸⁶Kr+⁴⁸Ca, in agreement with the results obtained at higher energy

Further analysis to be done:

- Analysis of Deep Inelastic Contribution as a function of N/Z

- Analysis of LCP energy spectra in coincidence with ER and FF, to better distinguish dynamic nature of the processes

- Theoretical calculations with a microscopic transport models to see relation among different mechanisms as a function of N/Z

 Extend this research by using radioctive beams at SPES LOI@SPES
 E.De Filippo, J.Frankland, S.Pirrone, G.Politi, P.Russotto
 ⁹²Kr + ^{40,48}Ca 10 AMeV

Exotic beams for science

^{132,140}Ba* E* ~ 320 MeV $(N/Z)_{CN} = 1.5$

NEWCHIM Collaboration

S. Pirrone¹, G. Politi^{1,2}, B.Gnoffo^{1,2}, E. De Filippo¹, P. Russotto³,
G. Cardella¹, E. Geraci^{1,2}, G. Lanzalone^{3,5}, N.S. Martorana^{2,3}, A. Pagano¹,
E.V. Pagano³, M. Papa¹, F. Rizzo^{2,3}, A. Trifirò^{1,4}, M. Trimarchi^{1,4}

1) INFN, Sezione di Catania, Italy

2) Dipartimento di Fisica e Astronomia «Ettore Majorana» Università di Catania, Italy
3) INFN, Laboratori Nazionali del Sud, Catania, Italy
4) Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Italy
5) Università degli Studi "Kore", Enna, Italy