

Comparative study of 4 reactions at onset of pre-equilibrium

Università degli Studi di Padova

Magda Cicerchia

on behalf of NUCL-EX Collaboration

OUTLINE:

- Scientific motivation
- The experiment
- Analysis results:
 - Same beam velocity;
 - Same CN excitation energy.

Scientific Motivation

- ELASTIC (or EXCLUSIVE) BREAKUP: $a + A \rightarrow b + x + A_{gs}$, where a = b + x
- NON-ELASTIC (or INCLUSIVE) BREAKUP:
 - INELASTIC BREAKUP:

 $a + A \rightarrow b + x + A^*$ $a + A \rightarrow b^* + x + A_{as}$

• PARTICLE TRANSFER:

 $a + A \rightarrow b + B$, where $B \equiv A + x \equiv bound system$

INCOMPLETE FUSION:

 $a + A \rightarrow b + C$, where $C \Rightarrow$ decay emitting γ or particles

COMPLETE FUSION:

 $a + A \rightarrow CN \Rightarrow decay emitting \gamma or particles$

 $a + A \rightarrow preequilibrium particles + ICN \Rightarrow$ decay emitting γ or particles

J. Cabrera, Phys. Rev. C 68 (2003) 034613-1. - - - X. Campi et al., Phys. Lett. B 142 (1984) 8. --- J. Pouliot et al., Phys. Lett. B 299 (1993) 210. --- W. D. M. Rae et al., Phys. Rev. C 30 (1984) 158.

10 Mev/u

Ebeam

Scientific Motivation

- NON-ELASTIC (or INCLUSIVE) BREAKUP:
 - INELASTIC BREAKUP:

 $a + A \rightarrow b + x + A^*$ $a + A \rightarrow b^* + x + A_{gs}$

• PARTICLE TRANSFER: $a + A \rightarrow b + B$ where B = A + a = k

 $a + A \rightarrow b + B$, where $B \equiv A + x \equiv bound sy$

• INCOMPLETE FUSION: $a + A \rightarrow b + C$, where $C \Rightarrow$ decay emitting γ

• COMPLETE FUSION:

 $a + A \rightarrow CN \Rightarrow$ decay emitting γ or particles

$a + A \rightarrow preequilibrium particles + ICN \Rightarrow$ decay emitting γ or particles

J. Cabrera, Phys. Rev. C 68 (2003) 034613-1. - - - X. Campi et al., Phys. Lett. B 142 (1984) 8. --- J. Pouliot et al., Phys. Lett. B 299 (1993) 210. --- W. D. M. Rae et al., Phys. Rev. C 30 (1984) 158.

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

ACLUST2 experiment

43Sc 44Sc	45Sc 46Sc
42Ca 43Ca	44Ca 45Ca
41K 42K	43K 44K
40Ar 41Ar	42Ar 43Ar
39Cl 40Cl	41Cl 42Cl
385 395	40S 41S
37P 38P	39P 40P
36Si 37Si	38Si 39Si
2541 2041	2741 2241
35AI 36AI	37AI 38AI
34Mg 35Mg	36Mg 37Mg
33Na 34Na	35Na 36Na
32Ne 33Ne	34Ne
31F	
_	
	43Sc43Sc42Ca41Ca41Ca40Ar39C139C130S137P36S137S135A136Na31F

ACLUST2 data selection

- TARGET CONTAMINATION
 - ~**50%** ^AO in Si-target ~**30%** ^AO in Al-target
- COMPLETE EVENTS SELECTION $Z_{detected}^{tot} = Z_{proj} + Z_{Targ} = 22$ uncontaminated events 0.8% of the total events

• COMPARISON with MODELS

Statistical (**GEMINI**⁺⁺) & Dynamical (AMD & HIPSE) codes

Simulated events are:

- filtered with a software replica of the experimental setup;
- selected in the same way of the experimental data.

¹⁶O+³⁰Si @ 7 MeV/u (η=0.30; E*_{CN}=88.0 MeV) ¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV) ¹⁹F+²⁷AI @ 7 MeV/u (η=0.17; E*_{CN}=103.5 MeV)

¹⁶O+³⁰Si @ 7 MeV/u (η=0.30; E*_{CN}=88.0 MeV)
 ¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV)
 ¹⁹F+²⁷AI @ 7 MeV/u (η=0.17; E*_{CN}=103.5 MeV)

Percentage of each residue respect total number of residues

	16	⁵ 0	18	0	¹⁹ F		
RESIDUE	EXP	G++	EXP	G++	EXP	G++	
Al	0,2%	0,06%	1,1%	0,4%	2%	0,8%	
Si	0,7%	0,9%	3%	2%	4%	3%	
Р	4%	3%	11%	6%	12%	9%	
S	13%	10%	27%	20%	28%	25%	
CI	36%	27%	49%	44%	48%	50%	
Ar	61%	65%	58%	65%	55%	62%	
K	55%	68%	38%	49%	37%	40%	
Ca	25%	23%	12%	13%	12%	10%	
Sc	5%	2%	2%	0,7%	2%	0,4%	

IVI. CICETCIIIA - IVIO ZUIS - IVIOY IS, ZUIS - Venice, Italy

 $p-\alpha$ complementary behavior in agreement with found Branching Ratios in exclusive channels

¹⁶O+³⁰Si @ 7 MeV/u (η=0.30; E*_{CN}=88.0 MeV)
 ¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV)
 ¹⁹F+²⁷AI @ 7 MeV/u (η=0.17; E*_{CN}=103.5 MeV)

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

RESULTS for the last reaction: ¹⁶O+³⁰Si@8 AMeV

 $^{16}\text{O}+^{30}\text{Si}$ @ 8 MeV/u (η =0.30; E $^{*}_{CN}$ =95.4 MeV)

¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV)

RESULTS for the last reaction: 16O+30Si@8 AMeV

 $^{16}\text{O+}^{30}\text{Si}$ @ 8 MeV/u (η=0.30; $\text{E}^{\star}_{\text{CN}}\text{=}95.4$ MeV)

 $^{18}\text{O}+^{28}\text{Si}$ @ 7 MeV/u (η=0.22; $\text{E}^{*}_{_{CN}}$ =95.5 MeV)

RESULTS for the last reaction: ¹⁶O+³⁰Si@8 AMeV

 $^{16}\text{O}+^{30}\text{Si}$ @ 8 MeV/u (η =0.30; E $^{*}_{\ CN}$ =95.4 MeV)

 $^{18}\text{O}+^{28}\text{Si}$ @ 7 MeV/u (η=0.22; $\text{E}^{*}_{_{CN}}$ =95.5 MeV)

Experimental Multiplicity Protons α -particles Normalized Yields Normalized Yields 10-10 10-; 10^{-2} 10^{-?} 10⁻³ 10⁻⁴ 10 $^{16}O + ^{30}Si$ 10⁻⁵ 10- $^{18}O_{+}^{28}S$ 10 10 2 3 5 6 2 3 5 6 7 4 4 Multiplicity Multiplicity **RATIO (EXP/G⁺⁺) of Yields vs. Multiplicity** α -particles 102 Yield Ratio (Exp./Sim.) Yield Ratio (Exp./Sim.) Protons ¹⁶O+³⁰Si @ 128MeV 18O+28Si @ 126MeV 10 10 10 10 5 6 5 6 Mult Mult

RESULTS for the last reaction: 16O+30Si@8 AMeV

 $^{16}\text{O+}^{30}\text{Si}$ @ 8 MeV/u (η =0.30; E $^{*}_{CN}$ =95.4 MeV)

¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV)

RATIO (EXP/G⁺⁺) of α Yields vs. Ang. Distr.

w. ciccichia - NSD 2019 - May 13, 2019 - Venice, Italy

RESULTS for the last reaction: 16O+30Si@8 AMeV

 $^{16}\text{O+}^{30}\text{Si}$ @ 8 MeV/u (η=0.30; $\text{E}^{*}_{\text{CN}}\text{=}95.4$ MeV)

¹⁸O+²⁸Si @ 7 MeV/u (η=0.22; E*_{CN}=95.5 MeV)

Experimental α Angular Distribution

RESULTS for the last reaction: ¹⁶O+³⁰Si@8 AMeV

 α -particles Energy Spectra: Exp. vs. G⁺⁺

Exp

¹⁶O+³⁰Si @ 8 MeV/u (η=0.30; E*_{CN}=95.4 MeV)

<u>RESULTS for the last reaction: 16O+30Si@8 AMeV</u>

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

	reactions at same v_{beam} (7AMeV): ¹⁶ O+ ³⁰ Si ¹⁸ O+ ²⁸ Si ¹⁹ F+ ²⁷ Al @7AMeV	reactions at same E_{CN}^* (98,5MeV): ¹⁶ O+ ³⁰ Si@8AMeV ¹⁸ O+ ²⁸ Si@7AMeV				
EXP. GLOBAL VARIABLES:						
 Z distribution Multiplicity	Expected	d behavior 🤥				
Angular Distribution	Dependence on v _{CN} of the A.D. behavior					
• Angular Distribution	Strong over-production of α at very forward angles					
COMPARISON WITH STATISTICAL MODEL (RATIO):						
Multiplicity	Underestimation of	of high multiplicity α				
Angular Distribution	Dependence on E^*_{CN} and/or η of α forward overproduction	Dependence on η and/or v_{beam} overproduction				
	Forward α over-production for $Z_{residue} > 17$					
• Energy Spectra	Yields underestimation	(higher as E [*] _{CN} decreases)				
	Shape reproduction 🛛 🌏 👌	¹⁶ O \rightarrow signature of pre-equilibrium onset (

BRANCHING RATIO of the most populated exit channels

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

BRANCHING RATIO of the most populated exit channels

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

BRANCHING RATIO of the most populated exit channels

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

Conclusions

	Analysis and compa		
	3 at same v_{beam} (7AMeV): ¹⁶ O+ ³⁰ Si ¹⁸ O+ ²⁸ Si ¹⁹ F+ ²⁷ Al @7AMeV	2 at same E [*] _{CN} (98,5MeV): ¹⁶ O+ ³⁰ Si@8AMeV ¹⁸ O+ ²⁸ Si@7AMeV	
õ	Experimental α-overproduction at forv predic		
Y	The highest is for ¹⁶ O @ 7 AMeV.	¹⁶ O @ 8 AMeV onset of pre-equilibrium	
	E [*] _{CN} dependence of the B.R. trend.	2	
	EXP. vs. GEMINI++:		
	 ODD RESIDUES: trends and yields an statistical model; 	e well reproduced by 🧿 👌	seems to be higher for ¹⁶ O @ 7 AMeV, but in comparison with model the
	 EVEN RESIDUES: trends are reproduced; HIGH DISCREPANCIES in the reproduced in pure α (+xn) exit channels. 	oduction of yields	Statistical model DON'T REPRODUCE light nuclei => may be due to the important rule of the structure.

Thank you for the attention!!

- M. CICERCHIA⁽¹⁾ (²)(^{*}), F. GRAMEGNA⁽¹⁾, D. FABRIS⁽³⁾, T. MARCHI⁽¹⁾, M. CINAUSERO⁽¹⁾, C. MARCHI⁽¹⁾, M. CINAUSERO⁽¹⁾, C. MARCHI⁽¹⁾, M. CINAUSERO⁽¹⁾, (³), D. MARCHI⁽²⁾, (³), D. MARCHI⁽²⁾, (³), D. MARCHI⁽²⁾, (³), D. MARCHI⁽³⁾, C. CINAUSERO⁽¹⁾, (³), D. MARCHI⁽¹⁾, M. CINAUSERO⁽¹⁾, (³), D. MARCHI⁽¹⁾, (³), D. MARCHI⁽¹⁾, M. CINAUSERO⁽¹⁾, M. CINAUSE
- G. MANTOVANI(1) (2), A. CACIOLLI(2) (3), G. COLLAZUOL(2) (3), D. MENGONI(2) (3), M. DEGERLIER(4), L. MORELLI(5), M. BRUNO(6), M. D'AGOSTINO(6), C. FROSIN(6),
- M. DEGERLIER(7), L. MORELLI(6), M. BRUNO(6), M. D'AGOSTINO(6), C. FROSIN(6), S. DERENN(7), C. DEENTREEN(7), M. DRUNO(6), M. D'AGOSTINO(6), D. OTTERENN(7),
- S. BARLINI⁽⁷⁾, S. PIANTELLI⁽⁷⁾, M. BINI⁽⁷⁾, G. PASQUALI⁽⁷⁾, P. OTTANELLI⁽⁷⁾,
- G. CASINI⁽⁷⁾, G. PASTORE⁽⁷⁾, A. CAMAIANI⁽⁷⁾, S. VALDRÉ⁽⁷⁾, D. GRUYER⁽⁵⁾, N. GELLI⁽⁷⁾, A. OLMI⁽⁷⁾, G. POGGI⁽⁷⁾, I. LOMBARDO⁽⁸⁾, D. DELL'AQUILA⁽⁹⁾, S. LEONI⁽¹⁰⁾, N. CIEPLICKA-
- ORYNCZAK (¹¹), B. FORNAL (¹¹) and V. KRAVCHUK (¹²)
- (¹) INFN, Legnaro National Laboratory Legnaro (Pd), Italy.
- ⁽²⁾ Padua University, Physics and Astronomy Department Padua, Italy.
- ⁽³⁾ INFN, Padua Department Padua, Italy.
- (⁴) Science and Art Faculty, Physics Department, Nevsehir Haci Bektas Veli Univ., Nevsehir, Turkey.
- (⁵) Grand Accélérateur National d'Ions Lourds, 14076 Caen, France.
- (⁶) INFN, Bologna Department and University, Physics and Astronomy Department Bologna, Italy.
- (⁷) INFN, Florence Department and University, Physics and Astronomy Department Florence, Italy.
- (⁸) INFN, Catania Department Catania, Italy.
- ⁽⁹⁾ MSU Department of Physics and Astonomy Michigan USA.
- ⁽¹⁰⁾ INFN, Milan Department and University, Physics and Astronomy Department Milan, Italy.
- ⁽¹¹⁾ Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland.
- ⁽¹²⁾ National Research Center "Kurchatov Institute" Moscow, Russia.

Spares

RESIDUES

GEMINI⁺⁺ filtered with a software replica of the experimental setup

Entrance channel	v _{CM}	$oldsymbol{artheta}_{graz}$	σ_{fus}
Beam + Target	cm/ns	deg	mb
¹⁶ O + ³⁰ Si	1,37	8,8	1070
¹⁶ O + ³⁰ Si	1,28	10,1	1081
¹⁸ O + ²⁸ Si	1,44	9,0	1110
¹⁹ F + ²⁷ Al	1,52	8,9	1100

Multiplicity

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

Multiplicity

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

RATIO EXP AMD

RATIO EXP HIPSE

HIPSE - RATIO

Energy spectra

¹⁶O+³⁰Si @111 MeV **Proton Spectra** GEMINI⁺⁺: w=1.1fm Exp Norm Residue Number Norm MAX ¹⁸O+²⁸Si @126 MeV **Proton Spectra** GEMINI⁺⁺: w=1.1fm Exp Norm Residue Number Norm MAX ¹⁹F+²⁷AI @133 MeV **Proton Spectra** GEMINI⁺⁺: w=1.1fm Exp

Norm Residue Number
 Norm MAX ³⁷

multiplicity

Comparison of MULTIPLICITY for

reactions with same E*_{CN}=98.5 MeV

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

Energy spectra

¹⁶O+³⁰Si @128 MeV α -particles Spectra GEMINI⁺⁺: w=1.1fm Exp Norm Residue Number Norm MAX ¹⁸O+²⁸Si @126 MeV α -particles Spectra

Norm Residue Number

Exp

Norm MAX

Energy spectra

Proton Spectra GEMINI⁺⁺: w=1.1fm Norm Residue Number Norm MAX ¹⁸O+²⁸Si @126 MeV **Proton Spectra** GEMINI⁺⁺: w=1.1fm Norm Residue Number Norm MAX

Ang Distr: G11

Ang Distr: AMD

Ang Distr: HIPSE

Ratio Angular Distribution in exclusive channels

Difference of α-particles Angular Distribution in exclusive channels

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

Ratio of α -particles Angular Distribution

BR @ 7 MeV exp and Ggeo and AMD

M. Cicerchia - NSD 2019 - May 13, 2019 - Venice, Italy

⁶ O+ ³⁰ Si @ 7 MeV/u (η=0.30; E* _{CN} =88.0 MeV)													
⁸ O+ ²⁸ Si @ 7 MeV/u (η=0.22; E*_,=95.5 MeV)		16 0			¹⁸ O			¹⁹ F					
⁹ F+ ²⁷ AI @ 7 MeV/u (η=0.17; E* _{CN} =103.5 MeV)		EX	(P	G11	AMD	EX	Р	G11	AMD	EXI	C	G11	AMD
		BR(%)	err BR	BR(%)	BR(%)	BR(%)	err BR	BR(%)	BR(%)	BR(%)	err BR	BR(%)	BR(%)
	Sc+1p	92	2	90	73	88	2	87	29	88	2	84	20
Ca+1α	76,6	0,9	29,6	8,5	60,4	0,6	13,4	5,7	53,4	0,6	9,8	10,7	
	Ca+2p	19,8	0,3	60,9	82,6	30,7	0,4	70,8	83,6	35,6	0,4	71,5	77,6
	Κ+1p+1α	91,8	0,8	91,7	72,3	85,9	0,5	80,8	49,6	83,3	0,5	74,5	44,1
	Ar+2α	63,7	0,7	28,9	12,7	39,6	0,3	12,4	4,8	34,8	0,3	8,6	3,7
	Ar+2p+1α	30,6	0,4	64,3	79,8	50,0	0,3	75,8	84,0	52,5	0,3	77,4	83,0
	Cl+1p+2α	86,4	1,5	91,3	84,3	81,4	0,6	84,5	67,4	76,8	0,6	79,6	61,3
Branching Ratios of	S+3α	83	2	68	53	60,3	0,7	39,8	24,3	50,1	0,6	28,3	16,3
	S+2p+2α	8,7	0,5	9,1	25,2	28,9	0,4	31,2	55,5	37,5	0,5	43,0	63,8
the most populated	Ρ+1p+3α	49	4	30	37	71,0	1,4	51,9	57,1	73,5	1,3	60,1	63,1
exit channels	Ρ+3p+2α	0,4	0,2	0,0	0,3	0,49	0,07	0,17	2,47	1,10	0,09	0,70	42,37
	P+2α+Li	12,6	1,7	0,5	1,5	7,7	0,3	1,5	1,7	6,8	0,3	1,6	3,2
	P+1p+1α+Li	4,0	0,8	1,9	2,4	4,6	0,2	5,7	5,2	4,3	0,2	7,2	1,6
	Ρ+1α+Β	33	3	67	58	11,0	0,4	36,1	27,6	7,5	0,3	23,3	4,3
	Si+4α	81	9	67	56	71	2	49	45	62	2	43	20
	Si+2p+3α	1,6	0,8	0,0	1,6	5,1	0,4	2,2	8,7	9,4	0,5	4,0	46,3
	Si+2α+Be	9	2	9	9	7,6	0,5	6,1	7,0	7,0	0,4	6,8	11,9
	Si+1p+1α+B	6	2	23	31	12,3	0,6	40,1	33,0	13,6	0,6	40,9	4,0
	Al+1p+4α	27	15	0	8	32	3	12	29	39	3	25	45
	Al+2α+B	50	24	100	92	47	5	84	65	36	3	63	46

Conclusions

Alpha channels

