B boson search studies

Elena Perez del Rio

KLOE-2 General Meeting Frascati 23 September 2018

Outlook

- Motivation: B boson
- Data selection
 - Selection of prompt events
 - Selection of signal events
 - Selection cuts
 - Kinematic Fit 2 with constrains
- Cut on wrong hypothesis to clean omega/f0
- ToDo list / Summary

New GeV-scale forces: Dark Photon

- A new low energy gauge interaction mediated by a neutral light mass vector particle, usually named the U boson, with a small kinetic mixing ε (<10⁻³) with SM
- Dark vector boson U which mixes with photon: e^+

$$\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$$

• KLOE:

- $\phi \rightarrow \eta U \text{ with } U \rightarrow e^+ e^-$
- $e^+ e^- \rightarrow U\gamma$ with $U \rightarrow \mu^+ \mu^-$
- $e^+ e^- \rightarrow Uh'$ with $h' \rightarrow invisible$
- $e^+ e^- \rightarrow U\gamma$ with $U \rightarrow e^+ e^-$

- $e^+ e^- \rightarrow U\gamma$ with $U \rightarrow \pi^+ \pi^-$

Phys. Lett B 706 (2012) 251-255 Phys. Lett B 720 (2013) 111-115

Phys. Lett B 736 (2014) 459-464

Phys.Lett. B747 (2015) 365-372

Phys.Lett. B750 (2015) 633-637

Phys.Lett. B SUBMITTED

• Search for dilepton resonances

Leptophobic Dark Matter mediator search with KLOE-2

- B boson couples mainly to quarks
- Most basic model → coupling to baryon number

$$\mathscr{L} = \frac{g_B}{3} \bar{q} \gamma^{\mu} q B_{\mu} \qquad \qquad g_B \lesssim 10^{-2} \times (m_B/100 \text{ MeV}) \\ \alpha_B = \frac{g_B^2}{4\pi} \lesssim 10^{-5} \times (m_B/100 \text{ MeV})^2$$

- $\Phi \rightarrow \eta B$ with $B \rightarrow \pi^0 \gamma$
 - Channel used for a0(980) scalar meson
- Look for resonance in $\pi^0\gamma$ invariant mass
- 2001/2002 data analysis
 - \sim 13000 events after background subtraction
 - From ~ 4.7 Mevents Φ
- 2005 largest and more stable sample

	Decay \rightarrow Production \downarrow	$B \rightarrow e^+ e^-$ $m_B \sim 1 - 140 \text{ MeV}$	$B \rightarrow \pi^0 \gamma$ 140–620 MeV	$B \rightarrow \pi^+ \pi^- \pi^0$ 620–1000 MeV	$B \to \eta \gamma$
	$ \begin{array}{c} \pi^0 \to B\gamma \\ \eta \to B\gamma \end{array} $	$\pi^0 ightarrow e^+ e^- \gamma \ \eta ightarrow e^+ e^- \gamma$	$\eta \rightarrow \pi^0 \gamma \gamma$		
KLOE searches	$\begin{array}{l} \eta' \to B\gamma \\ \omega \to \eta B \end{array}$	$\eta' ightarrow e^+ e^- \gamma \ \omega ightarrow \eta e^+ e^-$	$\eta' ightarrow \pi^0 \gamma \gamma \ \omega ightarrow n \pi^0 \gamma$	$\eta' ightarrow \pi^+ \pi^- \pi^0 \gamma$	$\eta' ightarrow \eta \gamma \gamma$
	$\phi \to \eta B$	$\phi ightarrow \eta e^+ e^-$	$\phi \to \eta \pi^0 \gamma$		

B Boson search summary

- Selection
 - Exactly 5 **prompt** photons
 - Cut in Eclu and Theta cluster to reduce bkg from accidentals
- Kinematic Fit
 - Fortran wrap in $c^{++} \rightarrow KLOE$ code
 - 1st fit with 9 constrains
 - T R/c = 0 for all 5 gammas w/ respect to Phi vtx
 - Total 4 momentii of the gammas = E_e- + E_e+
 - $X^2 \le 27$
- Selection
 - Combinatorics to choose the best η - π pair
- 2nd Kinematic Fit with 11 constraints
 - Add eta and pion mass to the fit

C++ KinFit

- 9 constrains:
 - T-R/c = 0 of all g's w/ respect to Phi vtx (5)
 - Total 4 Momentii of $g's = E_e + + E_e$ (4)
- χ² <= 27 (recipe 2001 analysis)

Black before KinFit Blue after Kinfit

K

Data selection

- Photon pair recombination
- Allowed to use 5 photon
- Recombine to all possible pairs forming η - π
- Selection by minimizing X^2

$$\chi^{2} = \frac{(m_{ij} - m_{\eta})^{2}}{\sigma_{\eta}^{2}} + \frac{(m_{kl} - m_{\pi})^{2}}{\sigma_{\pi}^{2}}$$

 $\sigma_{\pi} = 6 MeV$

 $\sigma_{\eta} = 9 \, MeV$

Data selection

Myy [MeV]

Fit with 11 constrains

- T R/c = 0 for all 5 gammas w/ respect to Phi vtx (5)
 - Total 4 momentii of the gammas = E_e- + E_e+ (4)
 - Gamma-gamma mass to eta (1)
 - Gamma-gamma mass to pi0 (2)

• $X^2 \le 20$

Fit with 11 constrains
X² <= 20

• Fit with 9 constrains

• $X^2 \le 20$

signal to bkg ratios f0: 1.7358 etagg: 685.777 eta3pi0: 2.97586 etapgg: 30.5779 omegapi0: 0.694625 pi0g: ---

Elena Perez del Rio

Before 2nd Kinematic Fit fo: 0.909 Etagg: 231.46 Eta3pi0: 0.73 Etapi0gg: 16.63 omegapi0: 0.55 Pi0g: -----

Fit with 9 constrains
X² <= 20

Low statistics sample

Elena Perez del Rio

Refined selection

• **263 pb-1** \rightarrow statistics still increasing (only three jobs per user: offline priority)

- New cut to remove the $\omega\pi$ / f0 background
 - After Kinecmatic Fit use the fitted photon information to recombine to all possible $\pi\pi$ pairs
 - Cut on the distance from pi0 mass to remove those possible real pion pairs

Second combinatorics to exclude pion pairs

- Photon pair recombination
- Allowed to use 5 photon
- Recombine to all possible pairs forming $\pi\text{-}\pi$
- Selection by minimizing X²

$$\chi^{2} = \frac{(m_{ij} - m_{\pi})^{2}}{\sigma_{\pi}^{2}} + \frac{(m_{kl} - m_{\pi})^{2}}{\sigma_{\pi}^{2}}$$

 $\sigma_{\pi} = 6 MeV$

Elena Perez del Rio

Second combinatorics to exclude pion pairs

2pi0 recombination after the second fit with 11 constraints Check the best combination of pi0-pi0 and build the chi^2 Cut on the chi^2 distribution to exclude the events that form a good pi0 couple

Results: Invariant Masses

Results: Invariant Masses

To Do list

Fit MC/data

Continue increasing statistics to use all 2005 data (maybe 2004 too)

- 2004 different conditions
- Tunning of resolutions for MC
- 3pi0 from eta is the biggest background remaining
 - Studying the missing mass, missing angle and TMVA to further reduce eta \rightarrow 3pi0 ??
 - Substract directly from MC ?
- We could use the data to do a new fit of the a0
- Extract upper limit
- Referees for the analysis???

