T and CPT tests in transitions of neutral kaons

Aleksander Gajos Jagiellonian University in Cracow

KLOE-2 General Meeting 23.09.2018

Motivation – Direct T and CPT symmetry tests

A direct test of the T or CPT symmetry requires and comparison of rates of the following processes:

- $\Phi \rightarrow K_S K_L \rightarrow \pi e \nu, 3\pi^0$
- $\Phi \rightarrow K_S K_L \rightarrow \pi^+\pi^-, \pi e \nu$

$$R_{2,\mathcal{CPT}}^{exp}(\Delta t) = \frac{I(\pi^+ e^- \bar{\nu}, 3\pi^0; \Delta t)}{I(\pi^+ \pi^-, \pi^+ e^- \bar{\nu}; \Delta t)}$$

$$R_{4,\mathcal{CPT}}^{exp}(\Delta t) = \frac{I(\pi^- e^+ \nu, 3\pi^0; \Delta t)}{I(\pi^+ \pi^-, \pi^- e^+ \nu; \Delta t)}$$

Focusing on the asymptotic region $\Delta \tau >> \tau_s$

- J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, Direct test of time-reversal symmetry in the entangled neutral kaon system at a Φ factory, Nucl. Phys. B 868 (2013) 102
- J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, Probing CPT in transitions with entangled neutral kaons, JHEP 1510 (2015) 139

Selection and analysis steps

 $\mathsf{K}_{_{\mathsf{S}}}\mathsf{K}_{_{\mathsf{L}}} o \pi \mathrm{e} \nu \ 3\pi^{\scriptscriptstyle 0}$

• Preselection:

- Vtx with 2 tracks close to IP
- 6 neutral clusters' set
- Reconstructing $K_1 \rightarrow 3\pi^0$
- Reconstruction of kaon decay times and Δt

• Analysis:

- basic $K_s \rightarrow \pi e \nu$ selection cuts
- TCA requirement for 2 tracks
- Time of flight analysis and cuts
- Cut on R/(T*c) for neutral clusters to reject $K_s \rightarrow \pi^0 \pi^0$
- Cut on d_{PCA} vs $\Delta E(\pi,e)$ to reject $K_s \rightarrow \pi^+\pi^-$
- Kinematic fit
- ANN-based classification of e/π and e/μ EMC clusters and tracks

• Preselection:

- vtx with 2 tracks close to IP
- $M(\pi\pi)$ and |p| cuts for 2 tracks
- Another vtx with 2 tracks correctly extrapolating to the EMC, with associated clusters and having passing TOF cuts
- ullet Reconstruction of kaon decay times and Δt

Analysis:

- Missing mass cuts
- TCA requirement for 2 tracks from K_L decay vertex
- Time of flight analysis and cuts

Steps of determination of R^T and R^{CPT}

Best obtained results of event subsample selection:

Further analysis steps:

- Division of each class of processes into 2 subsamples by lepton charge
- Selection efficiency estimation with control samples selected from data

- Calculation of the single and double T and CPT asymmetric ratios
- \bullet Fit of a constant level to the $\Delta t >> \tau_s$ region of the ratios with a dedicated ML fit

T asymmetric ratios

With efficiencies from data control samples except for the d_{PCA} vs $\Delta E(\pi,e)$ cut where MC-based efficiency correction is used

$$R_2^T = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^- e^+ \nu)} \cdot \frac{1}{D}$$

CPT asymmetric ratios

With efficiencies from data control samples except for the d_{PCA} vs $\Delta E(\pi,e)$ cut where MC-based efficiency correction is used

$$R_2^{CPT} = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^+ e^- \nu)} \cdot \frac{1}{D}$$

Open issues in the analysis

• One cut (2D on the dPCA vs $\Delta E(\pi,e)$ values) has an efficiency which cannot be reproduced by the presently used control samples and requires MC-based input to analysis efficiency

 The above cut as well as the last of TOF cuts have a large systematic effect on the result of the analysis

• There is an apparent slope in the R2(Δ t) and R4(Δ t) distributions

Tested attempts to replace the "problematic" cuts

Reference: (S/B after the present event selection is 33.5)

- Stronger cut on the outputs of e/π and e/μ particle classifiers
 - achieved S/B = 16 without the dPCA vs $\Delta E(\pi,e)$ cut with the same total efficiency
- Cutting on the kinematic variables M^2_{miss} , $M^2(e)$ calculated so that their resolution does not depend on the K_L decay point
 - Poor resolution, no significant S/B improvement obtained after possible cuts
- Studying the spatial location of EMC clusters associated to tracks identified as e and π in the signal ($K_S \rightarrow \pi e \nu$) and background ($K_S \rightarrow \pi + \pi -$, $K_S \rightarrow \pi + \pi \rightarrow \pi \mu \nu$)
 - No strong difference between signal and background
- Restricting the reconstructed K_s decay vertex location to a smaller volume around the IP
 - S/B = 28 without the dPCA vs $\Delta E(\pi,e)$ cut
 - 96% of the old analysis efficiency

Removing the d_{PCA} vs. $\Delta E(\pi,e)$ cut in favour of stricter cuts on:

- results of e/π and e/μ particle classification
- reconstructed K_s decay vertex location

Reminder: e/π and e/μ classifiers

Strengthening the cut on MLP(e, π) + MLP(e, μ)

Performance of the particle classification cuts tested on a MC sample with the d_{PCA} vs $\Delta E(\pi,e)$ cut excluded from event selection.

Retaining the same total efficiency of the old analysis scheme while strengtening the particle classification cut allows for:

S/B = 16 (previously 33.5 with the d_{PCA} vs $\Delta E(\pi,e)$ cut)

$K_s \rightarrow \pi e \nu$ and $K_s \rightarrow \pi \mu$ reconstructed vertices location

Adding a cut on Ks vertex position

- For the event sample after all steps of the present selection of $K_{_S}K_{_L}\to\pi e\nu~3\pi^0$
 - except the cut on d_{PCA} vs $\Delta E(\pi,e)$
 - with the cut on particle classifiers' outputs strengthened as shown in the previous slides
 - With a tighter cut on the K_s vertex location around the center of distributions for MC signal: $R_{\tau} < 3$ cm and |Z-0.8 cm|< 4.5 cm

- The achieved event selection performance on MC is:
 - S/B = 28 (previously 33.5 with the d_{PCA} vs $\Delta E(\pi,e)$ cut)
 - Efficiency for signal reduced by 96% w.r.t. selection with the d_{PCA} vs $\Delta E(\pi,e)$ cut

 R_2 and R_4 ratios for T and CPT after removal of the d_{PCA} vs. $\Delta E(\pi,e)$ selection cut (and the corresponding MC contribution to estimated selection efficiencies)

T asymmetric ratios - new

With efficiencies only from data control samples

$$R_2^T = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^- e^+ \nu)} \cdot \frac{1}{D}$$

For reference: T ratios before

With efficiencies from data control samples except for the d_{_{PCA}}\,vs\,\Delta E(\pi,e) cut where MC-based efficiency correction is used

$$R_2^T = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^- e^+ \nu)} \cdot \frac{1}{D}$$

CPT asymmetric ratios

With efficiencies only from data control samples

$$R_2^{CPT} = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^+ e^- \nu)} \cdot \frac{1}{D}$$

For reference: CPT ratios before

With efficiencies from data control samples except for the d_{PCA} vs $\Delta E(\pi,e)$ cut where MC-based efficiency correction is used

$$R_2^{CPT} = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^+ e^- \nu)} \cdot \frac{1}{D}$$

CPT double ratio

With efficiencies from data control samples except for the d_{PCA} vs $\Delta E(\pi,e)$ cut where MC-based efficiency correction is used

With efficiencies only from data control samples

Plans

- Prepare a thorough check of event selection performance in all of the control samples to ensure that each step of event selection works equally in the main and control samples
 - test efficiencies of each selection step using MC for both main and control samples
 - compare total efficiencies obtained from control samples selected from data and MC
- Search for other possible sources of the offset and slope in the T and CPT asymmetric ratios
- Perform a detailed evaluation of the systematic effects in the analysis
 - The systematics study included in the PhD thesis was not detailed enough
 - Recent changes to the event selection must be accounted for

Thank you for your attention!

Backup Slides

Rejection the of remaining $K_s \rightarrow \pi^+\pi^- (\rightarrow \pi \mu \nu)$ background

Remaining $K_s \to \pi^+\pi^- (\to \pi \mu \nu)$ background

MC Composition of the selected $K_s K_l \rightarrow \pi + \pi$ - $\pi e \nu$ event sample:

90% - $K_s \rightarrow \pi e \nu$ and $K_t \rightarrow 3 \pi^0$ (signal)

2.9% - $K_s \rightarrow \pi^+\pi^-$ and $K_t \rightarrow 3\pi^0$

2.4% - $K_s \rightarrow \pi^+\pi^- \rightarrow \pi \mu \nu$ and $K_l \rightarrow 3\pi^0$

1.6% - $K_s \rightarrow \pi^+\pi^-\gamma$ and $K_i \rightarrow 3\pi^0$

1.6% - other background components

DC inner wall p_{miss} The remaining background is strongly charge-asymmetric!

S/B = 11.5

MC Distribution of background components vs Δt (stacked histograms)

Track and cluster classification for $K_s \rightarrow \pi + \pi - (\to \pi \mu)$ rejection

data

- using particle classifiers applied to a (track, cluster) pair
- classifiers use the following information:
 - track |**p**|
 - E of the associated cluster
 - no. EMC layers with E_{dep}>0 in cluster
 - differences between E_{dep} in 1st and next layers of the EMC cluster
- Using classification algorithms from TMVA for binary classifications of track+cluster pairs:
 - electrons or pions
 - electrons or muons

After training, both classifiers are subsequently applied to the track+cluster identified as electron in the $K_s K_l \rightarrow \pi e \nu \ 3\pi^0$ sample

A cut is performed on output values of both classifiers

MLP-based classifier performance tests

Classifier performance tested with a training sample (data)

e / π vs e / μ classifier output when applied to KLOE MC

MC Sample composition – after cut on MLP classifier ouputs

MC Distribution of background components vs Δt after the cut on the sum of e/π and e/μ classifier outputs (stacked histograms)

 $S / B: 11.5 \rightarrow 33.5$

Signal efficiency of this cut: ~94 %

Dedicated maximum likelihood fit to fit the level of T and CPT asymmetric ratios

Problems with the χ^2 fit to asymmetric ratios

- The χ^2 fit directly compares uncertainties between particular points
 - As these uncertainties originate from poissonian errors, the relative uncertainty matters
 - The χ^2 fit was giving much significantly lower results if errors were taken into account than if just fitting to points alone

χ^2 fit, errorbars ignored

Maximum Likelihood fit to single ratios

Previously:

 raw Δt distributions were corrected for efficiency bin-by-bin then divided bin-by-bin to obtain the R(Δt) plot

- at each step, normal error propagation was perfored
- a χ^2 fit to the points in the R(Δt) plot was used

New approach

- input to the fit:
 - 2 raw Δt histograms from data, H₁ and H₂
 - 2 efficiency plots

- assuming poissonian uncertainties for numbers of events in raw histogram bins
- assuming uncertainty in the second histogram is negligible w.r.t. first histogram

 $H_{\downarrow}(t)$ – number of events in the bin of histogram H_{\downarrow} corresponding to $\Delta t = t$

 $\varepsilon_{x}(t)$ – efficiency for registration of events in histogram H_{x} in a bin corresponding to $\Delta t = t$

R(t) – value of the fitted function (costant or linear) in a bin corresponding to $\Delta t = t$

$$D = \frac{BR(K_L \to 3\pi^0)}{BR(K_S \to \pi^+\pi^-)} \frac{\tau_S}{\tau_L}$$

$$\forall_{t \in \text{fit range}} : \frac{H_1(t)/\varepsilon_1(t)}{H_2(t)/\varepsilon_2(t)} = R(t) \cdot D$$

$$log\mathcal{L}(R) = \sum_{t \in \text{fit range}} log\left(p\left(H_1(t), R(t)DH_2(t)\frac{\varepsilon_1(t)}{\varepsilon_2(t)}\right)\right)$$

poissonian probability

expected no. evts in bin

T, CP and CPT asymmetric ratios

T asymmetric ratios

With efficiencies from data control samples.

$$R_2^T = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^- e^+ \nu)} \cdot \frac{1}{D}$$

T asymmetric ratios

With efficiencies from MC

$$R_2^T = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^- e^+ \nu)} \cdot \frac{1}{D}$$

CP asymmetric ratios

With efficiencies from data control samples.

$$R_2^{CP}(\Delta t) = \frac{I(\pi^+ e^- \bar{\nu}, 3\pi^0; \Delta t)}{I(\pi^- e^+ \nu, 3\pi^0; \Delta t)}$$

CP asymmetric ratios

With efficiencies from MC

$$R_2^{CP}(\Delta t) = \frac{I(\pi^+ e^- \bar{\nu}, 3\pi^0; \Delta t)}{I(\pi^- e^+ \nu, 3\pi^0; \Delta t)}$$

CPT asymmetric ratios

With efficiencies from data control samples.

$$R_2^{CPT} = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^+ e^- \nu)} \cdot \frac{1}{D}$$

CPT asymmetric ratios

With efficiencies from MC

$$R_2^{CPT} = \frac{I(\pi^+ e^- \nu, 3\pi^0)}{I(\pi^+ \pi^-, \pi^+ e^- \nu)} \cdot \frac{1}{D}$$

CPT double ratio

$$\frac{R_2^{CPT}}{R_4^{CPT}} = \frac{I(3\pi^0, e^-)}{I(3\pi^0, e^+)} \frac{I(\pi^+\pi^-, e^+)}{I(\pi^+\pi^-, e^-)}$$

With efficiencies from data control samples.

With efficiencies from MC

Attempts to replace the problematic cuts tested so far

(S/B after the present event selection: 33.5)

- Strenghtening the cut on the outputs of e/π and e/μ particle classifiers
 - avievable S/B = 16 without the dPCA vs $\Delta E(\pi,e)$ cut with the same total efficiency
- Cutting on the kinematic variables M^2_{miss} , $M^2(e)$ calculated so that their resolution does not depend on the K_1 decay point
 - Very poor resolution, no significant S/B improvement obtained after possible cuts
- Studying the spatial location of EMC clusters associated to tracks identified as e and π in the signal ($K_s \rightarrow \pi ev$) and background ($K_s \rightarrow \pi + \pi K_s \rightarrow \pi + \pi \pi \mu \nu$)
 - No strong difference between signal and background
 - Additional checks in the next slides
- Performing the e/π and e/μ particle clasification separately in particlular intervals of particle momentum and incidence angle on the EMC
 - Little improvement in sample purity
 - Additional checks in the next slides
- Restricting the reconstructed "K_s decay vertex" to a smaller volume around the IP
 - S/B = 28 without the dPCA vs $\Delta E(\pi,e)$ cut at 96 % of the old analysis efficiency

Results of the tests in the next slides

D factor for $R_{2/4}$ asymmetry determination

$$D = \frac{BR(K_L \to 3\pi^0)}{BR(K_S \to \pi^+\pi^-)} \frac{\tau_S}{\tau_L} \qquad R_2 = \frac{I(\pi^+e^-\nu, 3\pi^0)}{I(\pi^+\pi^-, \pi^-e^+\nu)} \cdot \frac{1}{D} \qquad R_4 = \frac{I(\pi^-e^+\nu, 3\pi^0)}{I(\pi^+\pi^-, \pi^+e^-\nu)} \cdot \frac{1}{D}$$

$$D_{PDG} = \frac{0.1952 \pm 0.0012}{0.6920 \pm 0.0005} \frac{0.89564 \pm 0.00033}{511.6 \pm 2.1} = 0.4938 \pm 0.0037 \times 10^{-3}$$
$$D_{KLOE} = \frac{0.1997 \pm 0.0020}{0.69196 \pm 0.00051} \frac{0.89562 \pm 0.00052}{508.4 \pm 2.3} = 0.5084 \pm 0.0056 \times 10^{-3}$$

As pointed out by prof. Ceradini, the main source of discrepancy between D calculated with PDG fit data and with KLOE data are BR($K_L \rightarrow 3\pi^0$) and τ_L

	PDG fit	KLOE	PDG average	KLOE, no ∑BR=1
BR($K_L \rightarrow 3\pi^0$)	0.1952 ± 0.0012	0.1997 ± 0.0020	0.1969 ± 0.0026	_
$\tau_{L} [10^{-10} s]$	511.6 ± 2.1	508.4 ± 2.3	509.9 ± 2.1	509.2 ± 3.0

If the PDG average values are used for D_{PDG} and the non-constained τ_L value from KLOE, compatible results are obtained:

$$D_{PDG} = \frac{0.1969 \pm 0.0026}{0.6920 \pm 0.0005} \frac{0.89564 \pm 0.00033}{509.9 \pm 2.1} = 0.4998 \pm 0.0069 \times 10^{-3}$$
$$D_{KLOE} = \frac{0.1997 \pm 0.0020}{0.69196 \pm 0.00051} \frac{0.89562 \pm 0.00052}{509.2 \pm 3.0} = 0.5076 \pm 0.0059 \times 10^{-3}$$

This value is used in the following results

Selection efficiencies

Large statistical errors in efficiency for $K_s K_L \rightarrow \pi e \nu, 3\pi^0$

This can be improved by using additional all_phys MC productions

Analysis Efficiencies

Large statistical errors in efficiency for $K_s K_L \rightarrow \pi e \nu, 3\pi^0$

This can be improved by using additional all_phys MC productions

$K_1 \rightarrow 3\pi^0 \rightarrow 6\gamma$ reconstruction

We need to reconstruct the time of K_L decay with a resolution $O(1\tau_s)$

 $K_L K_S \to \pi e \nu, 3\pi^0$ Requires reconstruction independent of K_s momentum

A special reconstruction method was prepared for $K_1 \rightarrow 3\pi^0$:

$$(T_i - t)^2 c^2 = (X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2, \quad i = 1, \dots, 6$$

 $\Rightarrow x, y, z \text{ and } t$

Resolution of $K_L \rightarrow 3\pi^0$ decay time with the "GPS-like" reconstruction and a kinematic fit

Present procedure to obtain R_{2/4}

d_{PCA} vs $\Delta E(\pi,e)$ cut efficiency

T-asymmetric ratios

ML fit, before $K_s \rightarrow \pi + \pi - (\rightarrow \pi \mu)$ bcg rejection

CPT-asymmetric ratios

ML fit, before $K_S \rightarrow \pi + \pi - (\rightarrow \pi \mu)$ bcg rejection

ML fit, after $K_s \rightarrow \pi + \pi - (\rightarrow \pi \mu)$ bcg rejection

CP-asymmetric ratios

ML fit, before $K_S \rightarrow \pi + \pi - (\rightarrow \pi \mu)$ bcg rejection

Double ratios (CPT and T asymmetric)

ML fit, before $K_S \rightarrow \pi + \pi - (\rightarrow \pi \mu)$ bcg rejection

Recent activity: PhD thesis

Available here:

http://sphinx.if.uj.edu.pl/~alek/thesis/phd_thesis_gajos.pdf

DOCTORAL DISSERTATION
PREPARED IN THE INSTITUTE OF PHYSICS
OF THE JAGIELLONIAN UNIVERSITY
SUBMITTED TO THE FACULTY OF PHYSICS,
ASTRONOMY AND APPLIED COMPUTER SCIENCE
OF THE JAGIELLONIAN UNIVERSITY

- Topis:
 - direct T test with KLOE data
 - preliminary studies for symmetry tests with J-PET

Investigations of fundamental symmetries with the electron-positron systems

Aleksander Gajos

Supervised by: prof. dr hab. Paweł Moskal Co-supervised by: dr Eryk Czerwiński

Cracow, 2018

Centre of the K_s vertex cut

Z in (0.8 +/- 4.5) cm