Central exclusive production at LHCb

Charlotte Van Hulse, on behalf of the LHCb collaboration University College Dublin

PHOTON 2019 Frascati, Italty June 3-7, 2019

Outline

- physics of central exclusive production (CEP)
- CEP and instrumentation: LHCb detector
- single J/ ψ , ψ (2S), Υ production in proton-proton collisions
- pairs of charmonium in proton-proton collisions
- summary and outlook

large Q^2

Λ

Hard exclusive meson production hard scale = large $Q^2 (Q^2=-q^2)$

Λ

Hard exclusive meson production hard scale = large $Q^2 (Q^2=-q^2)$

 $\begin{array}{l} {\sf CLAS} \ - \ {\sf PRC} \ 95 \ ('17) \ 035207; \ 95 \ (2017) \ 035202 \\ {\sf COMPASS} \ - \ {\sf PLB} \ 731 \ ('14) \ 19; \ {\sf NPB} \ 915 \ ('17) \ 454 \\ {\sf JLab} \ Hall \ {\sf A} \ \ {\sf Collaboration} \ - \ {\sf PRC} \ 83 \ ('11) \ 025201 \\ {\sf HERMES} \ - \ {\sf EPJ} \ {\sf C} \ 74 \ ('14) \ 3110; \ 75 \ ('15) \ 600; \ 77 \ ('17) \ 378 \\ {\sf H1} \ - \ {\sf JHEP} \ 05('10)032; \ {\sf EPJ} \ {\sf C} \ 46 \ ('06) \ 585 \\ {\sf ZEUS} \ - \ {\sf PMC} \ {\sf Phys.} \ {\sf A1} \ ('07) \ 6; \ {\sf NPB} \ 695 \ ('04) \ 3 \end{array}$

Hard exclusive meson production hard scale = large $Q^2 (Q^2 = -q^2)$

 $\begin{array}{c} \text{CLAS} = \mbox{PRC 95 ('17) 035207; 95 (2017) 035202} \\ \text{COMPASS} = \mbox{PLB 731 ('14) 19; NPB 915 ('17) 454} \\ \text{JLab Hall A Collaboration} = \mbox{PRC 83 ('11) 025201} \\ \text{HERMES} = \mbox{EPJ C 74 ('14) 3110; 75 ('15) 600; 77 ('17) 378} \\ \text{H1} = \mbox{JHEP 05('10)032; EPJ C 46 ('06) 585} \\ \text{ZEUS} = \mbox{PMC Phys. A1 ('07) 6; NPB 695 ('04) 3} \end{array} \\ \begin{array}{c} \mbox{colliders, small } x_{B}, \mbox{gluons} \\ \mbox{4} \end{array}$

Hard exclusive meson production hard scale = large $Q^2 (Q^2=-q^2)$

 $\begin{array}{c} \text{CLAS} = \mbox{PRC 95 ('17) 035207; 95 (2017) 035202} \\ \text{COMPASS} = \mbox{PLB 731 ('14) 19; NPB 915 ('17) 454} \\ \text{JLab Hall A Collaboration} = \mbox{PRC 83 ('11) 025201} \\ \text{HERMES} = \mbox{EPJ C 74 ('14) 3110; 75 ('15) 600; 77 ('17) 378} \\ \text{H1} = \mbox{JHEP 05('10)032; EPJ C 46 ('06) 585} \\ \text{ZEUS} = \mbox{PMC Phys. A1 ('07) 6; NPB 695 ('04) 3} \end{array} \\ \begin{array}{c} \mbox{colliders, small } x_{B}, \mbox{gluons} \\ \end{tabular} \end{array}$

Exclusive meson photoproduction hard scale = large quark mass

е

Hard exclusive meson production hard scale = large $Q^2 (Q^2 = -q^2)$

 $\begin{array}{c} \text{CLAS} - \text{PRC 95 ('17) 035207; 95 (2017) 035202} & \text{H1} - \text{EPJ} \\ \text{COMPASS} - \text{PLB 731 ('14) 19; NPB 915 ('17) 454} & \text{ZEUS} - \text{N} \\ \text{JLab Hall A Collaboration} - \text{PRC 83 ('11) 025201} \\ \text{HERMES} - \text{EPJ C 74 ('14) 3110; 75 ('15) 600; 77 ('17) 378} \\ \text{H1} - \text{JHEP 05('10)032; EPJ C 46 ('06) 585} \\ \text{ZEUS} - \text{PMC Phys. A1 ('07) 6; NPB 695 ('04) 3} \end{array}$

Exclusive meson photoproduction hard scale = large quark mass

H1 – EPJ C 46 ('06) 585; 73 ('13) 2466; PLB 541 ('02) 251 ZEUS – Nucl. Phys. B 695 ('04) 3; PLB 680 ('09) 4

$$W_{\gamma p} = [30, 300] \text{ GeV}$$

Ultra-peripheral exclusive quarkonia production

Ultra-peripheral exclusive quarkonia production

 x_B

Ultra-peripheral exclusive quarkonia production

exclusive J/ψ production

exclusive J/ψ production

exclusive J/ψ production

Bethe-Heitler process

Central exclusive production $\downarrow^{p(A)}$ $\downarrow^{p(A)}$

p(A)

exclusive J/ψ production

p(A)

proton/ion dissociation

Central exclusive production p(A) p(A) μ**+** J/ψ С μp(A) p(A) exclusive J/ψ production Bethe-Heitler process p(A)

Exclusive J/ ψ and ψ (2S) production

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

JHEP 10 (2018) 167

- pp collisions
 - run 1 $\sqrt{s} = 7$ TeV: 929±33 pb⁻¹
 - run 2 (2015) $\sqrt{s} = 13$ TeV: 204±8 pb⁻¹
- $J/\psi \rightarrow \mu^+\mu^-$
- $\psi(2S) \rightarrow \mu^+\mu^-$
- x_{B} down to $2x10^{\text{-}6}$

- 2 muons with $2 < \eta < 4.5$
- no other detector activity
- $p_T^2 < 0.8 \ {
 m GeV}^2/c^2$

 $p_T^2 \approx -t$

Exclusive J/ ψ and ψ (2S) production

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

JHEP 10 (2018) 167

- pp collisions
 - run 1 $\sqrt{s} = 7 \text{ TeV}$: 929±33 pb⁻¹
 - run 2 (2015) $\sqrt{s} = 13$ TeV: 204±8 pb⁻¹
- $J/\psi \rightarrow \mu^+\mu^-$

2 muons with 2<η<4.5
no other detector activity

•
$$p_T^2 < 0.8 \ {
m GeV}^2/c^2$$

 $p_T^2\approx -t$

 10^{4} • $\psi(2S) \rightarrow \mu^+\mu^-$ Candidates per 10 MeV LHCb ($\sqrt{s}=13$ TeV) • x_B down to $2x10^{-6}$ Total fit 10^{3} Nonresonant background = Bethe-Heitler process 10^{2} 10 1 Ē 2000 3000 4000 $Mass(\mu^+\mu^-)$ [MeV]

Proton dissociation and feed down

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

JHEP 10 (2018) 167

Proton dissociation and feed down:

Proton dissociation and feed down:

Cross section calculation

Cross section calculation

Cross section

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

JMRT prediction: based on gluon PDF

JHEP 10 (2018) 167

Photo-production cross section

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002

JHEP 10 (2018) 167

$$\sigma_{pp \to p\psi p} = r(W_+)k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma p \to \psi p}(W_+) + r(W_-)k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma p \to \psi p}(W_-)$$

• r = gap survival factor

•
$$\frac{dn}{dk_{\pm}}$$
 = photon flux

• $k_{\pm} = \frac{M_{\psi}}{2}e^{\pm y}$ = photon energy

• $W^2_{\pm} = 2k_{\pm}\sqrt{s}$ = photon-proton invariant mass

ambiguity since unknown which proton emits the photon \rightarrow fix W₋ from H1 parametrisation (Eur. Phys. J. C 73 (2013) 2466)

good agreement with JMRT NLO prediction

${\sf Exclusive}\,\Upsilon\,{\sf production}$

JHEP 09 (2015) 084

- pp collisions run 1
 - $\sqrt{s} = 7 \text{ TeV}$: 0.9 fb⁻¹
 - $\sqrt{s} = 8$ TeV: 2.0 fb⁻¹
- $\Upsilon \to \mu^+ \mu^-$
- x_B down to $2x10^{\text{-5}}$

- 2 muons with $2 < \eta < 4.5$
- no other detector activity
- $p_T^2 < 2.0 \ {
 m GeV}^2/c^2$

${\sf Exclusive}\,\Upsilon\,{\sf production}$

JHEP 09 (2015) 084

- pp collisions run 1
 - $\sqrt{s} = 7$ TeV: 0.9 fb⁻¹
 - $\sqrt{s} = 8$ TeV: 2.0 fb⁻¹

- 2 muons with $2 < \eta < 4.5$
- no other detector activity
- $p_T^2 < 2.0 \ {
 m GeV}^2/c^2$

• $\Upsilon \to \mu^+ \mu^-$

${\sf Exclusive}\,\Upsilon\,{\sf production}$

JHEP 09 (2015) 084

- 2 muons with 2<η<4.5
- $\sqrt{s} = 7$ TeV: 0.9 fb⁻¹
- $\sqrt{s} = 8$ TeV: 2.0 fb⁻¹

• pp collisions – run 1

- no other detector activity
- $p_T^2 < 2.0 \ {
 m GeV}^2/c^2$

• $\Upsilon \to \mu^+ \mu^-$

Υcross section

JHEP 09 (2015) 084

good agreement with JMRT NLO prediction

Production of charmonium pairs

J. Phys. G: Nucl. Part. Phys. 41 (2014) 115002

- sensitive to glueballs, tetraquarks
- sensitive to gluon distribution
 - $\propto \left[g(x_B)\right]^4$

dominant production mechanism

L. A. Harland-Lang et al., Int. J. Mod. Phys. A 29 (2014) 1430031

Production of charmonium pairs

J. Phys. G: Nucl. Part. Phys. 41 (2014) 115002

- sensitive to glueballs, tetraquarks
- sensitive to gluon distribution $\propto \left[g(x_B)
 ight]^4$
- pp collisions run 1
 - $\sqrt{s} = 7 \text{ TeV}$: 0.9 fb⁻¹
 - $\sqrt{s} = 8$ TeV: 2.0 fb⁻¹

- $\chi_c \to J/\psi\gamma$
- $J/\psi, \, \psi(2S) \to \mu^+ \mu^-$
- $2.0 < \eta_{\mu^+\mu^-} < 4.5$
- $J/\psi J/\psi,\,J/\psi\psi(2S),\,\psi(2S)\psi(2S)$ no other detector activity
- $\chi_{c0}\chi_{c0}, \chi_{c1}\chi_{c1}, \chi_{c2}\chi_{c2}$

dominant production mechanism

other possible production mechanism

L. A. Harland-Lang et al., Int. J. Mod. Phys. A 29 (2014) 1430031

J. Phys. G: Nucl. Part. Phys. 41 (2014) 115002

cross sections: not corrected for proton dissociation

$$\sigma^{J/\psi J/\psi} = 58 \pm 10(\text{stat}) \pm 6(\text{syst}) \text{ pb}$$

$$\sigma^{J/\psi\psi(2S)} = 63^{+27}_{-18}(\text{stat}) \pm 10(\text{syst}) \text{ pb}$$

$$\sigma^{\psi(2S)\psi(2S)} < 237 \text{ pb}$$

$$\sigma^{\chi_{c0}\chi_{c0}} < 69 \text{ nb}$$

$$\sigma^{\chi_{c1}\chi_{c1}} < 45 \text{ pb}$$

$$\sigma^{\chi_{c2}\chi_{c2}} < 141 \text{ pb}$$

Summary and outlook

- CEP: rich field of physics
- LHCb results on single J/ ψ , ψ (2S), Υ production in pp collisions: gluon GPDs and PDFs
- LHCb results on pairs of charmonium: double-pomeron exchange, tetraquarks, glueballs
- preliminary results on J/ ψ and ψ (2S) in PbPb collisions (LHCb-CONF-2018-003): nuclear GPDs and PDFs, shadowing
- preliminary results on χ_c in pp collisions (LHCb-CONF-2011-022): double-pomeron exchange
- preliminary results on dimuon Bethe-Heitler production in pp collisions (LHCb-CONF-2011-022)
- various analysis in pp, pPb and PbPb collisions with dimuon and single and double meson-production are ongoing

Back up

Exclusive J/ ψ and ψ (2S) production: systematic uncertainties $\sqrt{s} = 7$ TeV

	-		-					
y range	[2.00, 2.25]	[2.25,2.50]	[2.50,2.75]	[2.75,3.00]	[3.00,3.25]			
$\frac{\mathrm{d}\sigma}{\mathrm{d}v} J/\psi$	29.3 ± 1.7	92.5 ± 2.4	137.8 ± 2.4	173.1 ± 2.6	198.0 ± 2.7			
$\frac{\mathrm{d}\sigma}{\mathrm{d}y} \psi(2\mathrm{S})$	$0.56~\pm~0.11$	1.75 ± 0.17	$3.06~\pm~0.22$	$4.41~\pm~0.26$	$4.24~\pm~0.26$			
y range	[3.25, 3.50]	[3.50,3.75]	[3.75,4.00]	[4.00,4.25]	[4.25,4.50]			
$\frac{\mathrm{d}\sigma}{\mathrm{d}y} J/\psi$	187.6 ± 2.6	148.9 ± 2.4	107.4 ± 2.1	65.3 ± 2.0	21.9 ± 1.3			
$\frac{\mathrm{d}\sigma}{\mathrm{d}y} \psi(2\mathrm{S})$	$4.51~\pm~0.27$	3.43 ± 0.25	$2.05~\pm~0.20$	$1.47~\pm~0.19$	0.36 ± 0.11			
Correlated uncertainties expressed as a percentage of the final result								
$\epsilon_{ m sel}$	1.4%							
Purity determination (J/ψ)	2.0%							
Purity determination $(\psi(2S))$	13.0%							
ϵ_{single}	1.0%							
*Acceptance	2.0%							
*Shape of the inelastic background	5.0%							
*Luminosity	3.5%							
Total correlated statistical uncertainty (J/ψ)	2.4%							
Total correlated statistical uncertainty ($\psi(2S)$)	13.0%							
Total correlated systematic uncertainty	6.5%							

*: systematic uncertainties

Exclusive J/ ψ and ψ (2S) production: systematic uncertainties $\sqrt{s} = 13$ TeV

Source	J/ψ analysis (%)	$\psi(2S)$ analysis (%)
HERSCHEL veto	1.7	1.7
2 VELO track	0.2	0.2
0 photon veto	0.2	0.2
Mass window	0.6	0.6
$p_{\rm T}^2$ veto	0.3	0.3
Proton dissociation	0.7	0.7
Feed-down	0.7	-
Nonresonant	0.1	1.5
Tracking efficiency	0.7	0.7
Muon ID efficiency	0.4	0.4
Trigger efficiency	0.2	0.2
Total excluding luminosity	2.5	2.7
Luminosity	3.9	3.9

	2 < y < 3	3 < y < 3.5	3.5 < y < 4.5	2 < y < 4.5		
	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Purity fit	14.2	14.2	14.2	13.7	13.7	13.7
Feed-down b.g.	12.2	12.2	12.3	12.2	14.6	12.5
Υ' feed-down	4.0	4.3	5.4	4.5	11.1	
Mass fit	2.2	2.8	2.9	2.1	2.8	3.6
Luminosity	2.3	2.3	2.3	2.3	2.3	2.3
$\left \begin{array}{c} \mathcal{B}(\Upsilon \to \mu^+ \mu^-) \end{array} \right $	2.0	2.0	2.0	2.0	8.8	9.6
Total	19.5	19.7	20.0	19.3	24.8	21.4

Cross sections

cross sections: no correction for proton dissociation

 $\sigma^{J/\psi J/\psi} = 58 \pm 10(\text{stat}) \pm 6(\text{syst}) \text{ pb},$ $\sigma^{J/\psi\psi(2S)} = 63^{+27}_{-18}(\text{stat}) \pm 10(\text{syst}) \text{ pb},$ $\sigma^{\psi(2S)\psi(2S)} < 237 \text{ pb},$ $\sigma^{\chi_{c0}\chi_{c0}} < 69 \text{ nb},$ $\sigma^{\chi_{c1}\chi_{c1}} < 45 \text{ pb},$ $\sigma^{\chi_{c2}\chi_{c2}} < 141 \text{ pb},$

Cross sections

