

- B.Shwartz,
- Budker Institute of Nuclear physics,
- Novosibirsk State University, Novosibirsk

We (BINP) are here

07.06.2019

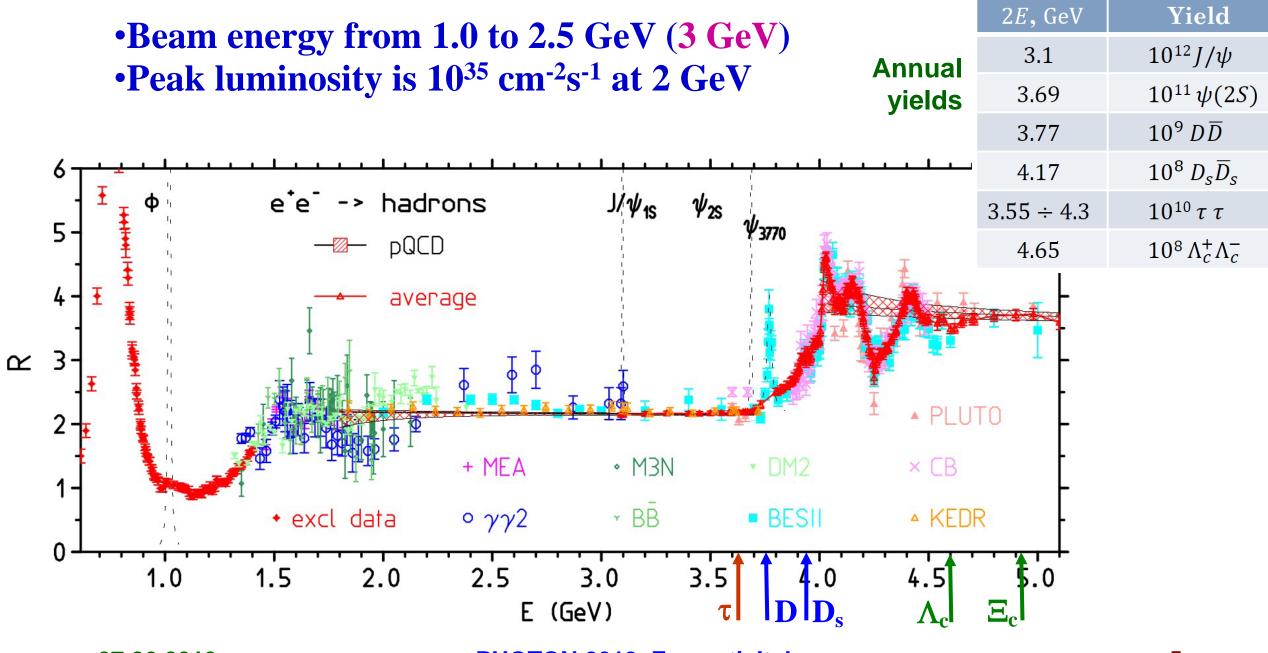
The Budker Institute of Nuclear Physics,

history and main activities

BINP was founded in 1958.

First director - G.I.Budker

Total number of emploee - about 2800


Researchers - 450

The main activities:

- **1.** Accelerators for high energy physics
- 2. Experiments on high energy physics.
- **3.** Theoretical studies in high energy physics.
- 4. Studies on plasma physics (as a way to obtain the controlled thermonuclear reactor).
- 5. Application of the accelerators in the industry and other fields of researches.
- 6. Collaborations (on particle physics): Belle, BaBar, ATLAS, LHCB, MEG, ...

BINP e⁺e⁻ colliders

- ■VEP-1, VEPP-2 first e⁻e⁻ and e⁺e⁻ colliders sixties;
- •VEPP-4 E_{CM} = 2 12 GeV: under operation, detectors: OLYA, MD1, KEDR (now).
- ■VEPP2M E_{CM}= 0.3 1.4 GeV: 1974 2000, detectors: OLYA, CMD, ND, CMD-2, SND.
- •VEPP 2000 E_{CM} = 0.3 2 GeV: in operation from 2010; detectors: CMD-3, SND-M

07.06.2019

BINP Super c/ τ factory project

- Beam energy from 1.0 to 2.5 GeV (3 GeV)
- Peak luminosity is 10³⁵ cm⁻²s⁻¹ at 2 GeV
- Electrons can be polarized longitudinally at IP
- On-line energy monitoring (~5÷10·10⁻⁵)

Charmonia

Spectroscopy, BR`s of J/ ψ decays to light mesons, detail study of higher cc and XYZ states;

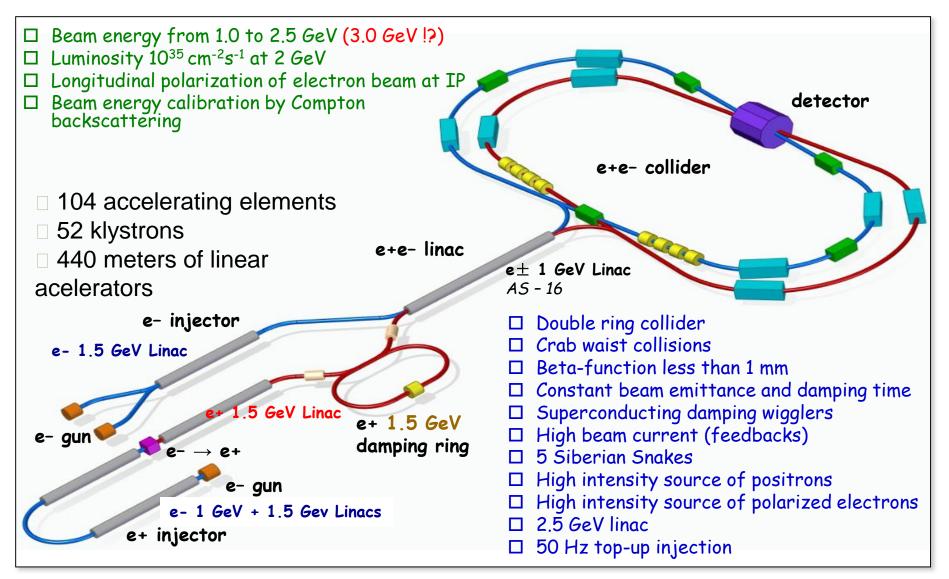
Weak decays of J/ ψ , the total branching ratio of c \rightarrow s transition is (2–4)×10⁻⁸

Charm mesons and Charm baryons

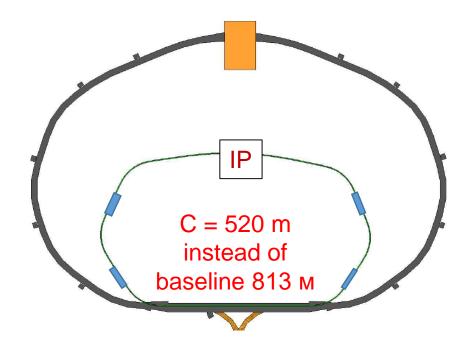
Spectroscopy, BR's, cross sections, Mixing, Search for \mathcal{CP} violation

τ lepton

Michel parameters, Spectral functions, search for \mathcal{CP} violation, Lepton flavour violation, Lepton universality


Two-photon processes

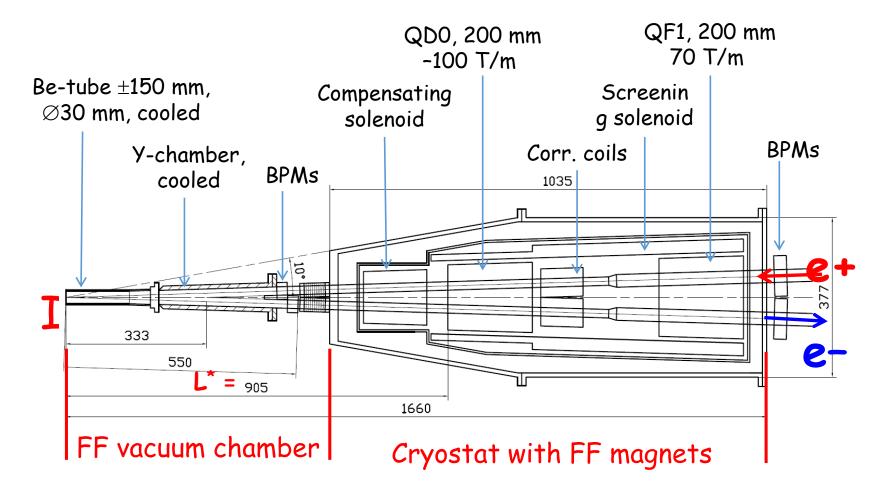
Search and study of the normal and exotic C-even states, measurement of the $\sigma(\gamma\gamma \rightarrow hadrons)$, TFF measurements


e+e- -> hadrons: total cross section by scan and ISR

07.06.2019

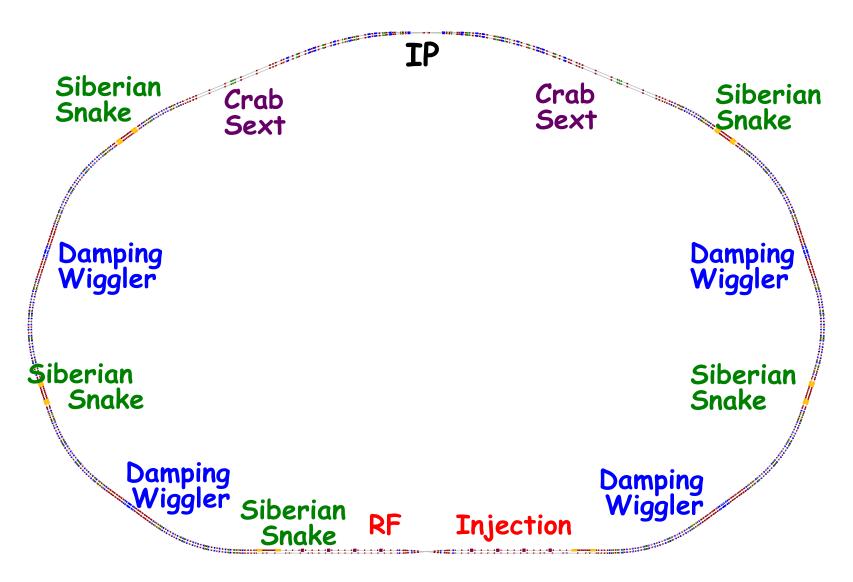
Layout & Solutions

General design and characteristics



E (MeV)	1000 ^{*)}	1000	2000	3000					
<u>∏</u> (m)	522.665								
F _{RF} (MHz)	351.034								
q	612								
θ (mrad)	±30								
к (%)	0.5								
β_{x}^{*} (cm)	5								
β_{y}^{*} (mm)	0.5								
I (A)	2.2	2.3	2.2	2.2					
N _{e/bunch} ×10 ¹⁰	5.5	7	6.7	9					
Nb	440	360	360	270					
U₀ (keV)	11	11	176	894					
V _{RF} (kV)	700	700	700	1600					
$\nu_s \times 10^{-3}$	6.1	6.1	4.3	4.9					
δ _{RF} (%)	3.5	3.5	2	1.7					
σ _E ×10 ⁻³	0.3/2	0.3/1.8	0.6/0.93	0.93 /0.96					
<mark>σ₅ (</mark> mm)	3.2/13	3.2/11	6.7/10	8.8 / 9.1					
ε _x (nm)	0.5/10	0.5/15	2.1/4.3	4.8/5/0					
L _{HG} ×10 ³⁵ (cm ⁻² s ⁻¹)	0.9	0.7	2	2.8					
HG (%)	78	73	86	85					
ξ _x ×10 ⁻³	5.8	4.3	4.2	4.6					
ξγ	0.12	0.1	0.12	0.11					
¢	15	15	20	17					
τ _L (s)	1900	2600	830	620					

^{*)} Two SC wigglers with 3.5 T field amplitude and 1.5 m length in the dispersion free section reduce the horizontal damping time from 300 ms to 100 ms.

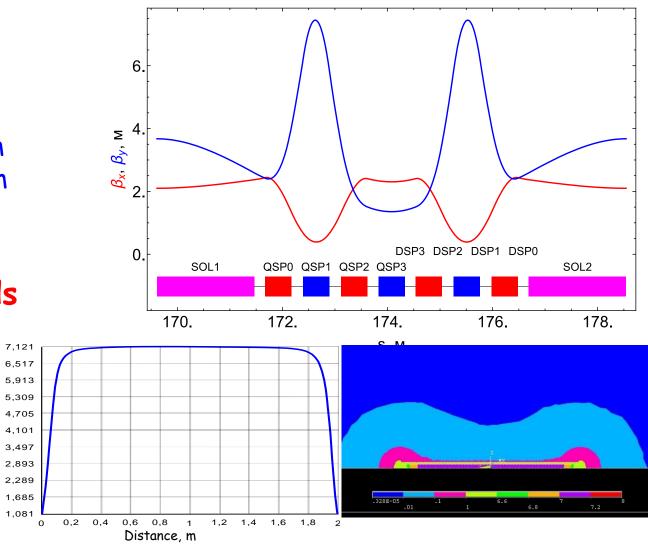

Machine-detector interface (MDI)

Gradients for 3 GeV

07.06.2019

Collider

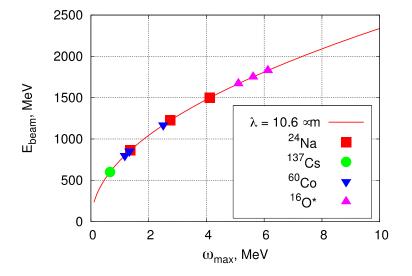
Siberian snake

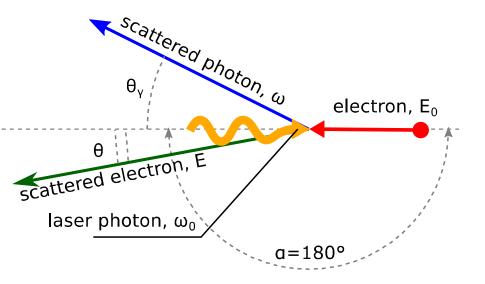

 \vdash

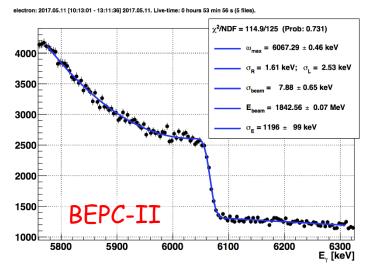
ongitudinal field,

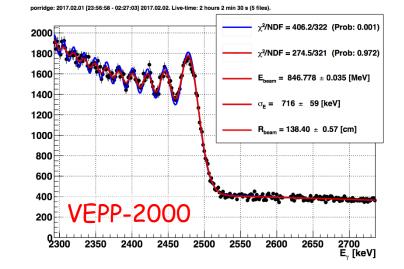
7 quadrupoles Gradient.....2.6 kGs/cm Length......50÷65 cm Aperture.....Ø76 mm

2 superconducting solenoids

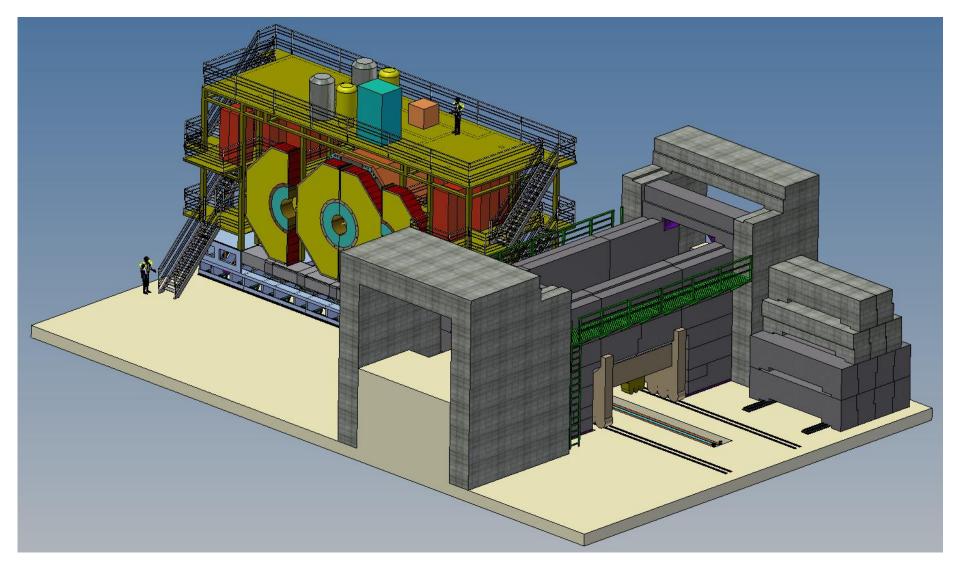

Field......71 kGs Length.....1.85 m Aperture....Ø76 mm Wire.....220 A Turns.....50000 Wire.....NbTi



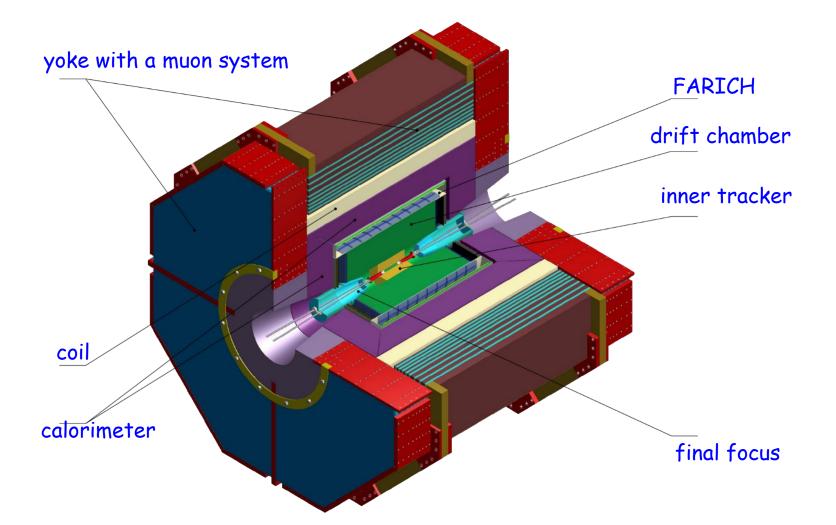

PHOTON 2019, Frascati, Italy


07.06.2019

Beam Energy Measurement by Compton Backscattering



07.06.2019


Detector

07.06.2019

Detector

Requirements ➤ Occupancy up to 300 kHz ► Good energy and momentum resolution **≻** High reconstruction efficiency to soft tracks **>** Perfect π/K and π/μ separation ➤ Minimal *CP* detector asymmetry

07.06.2019

Inner tracker (options)

Requirements

Reconstruction of Ks and hyperons
 Increase a solid angle of the detector up to 98 %

> Detection of particles with momentum from 50 MeV/c

→ Dimensions: $R_{inner} \ge 2.5 \text{ cm}$, $R_{external} \le 20 \text{ cm}$, $L \le 60 \text{ cm}$

TPC + GEM endcap redout

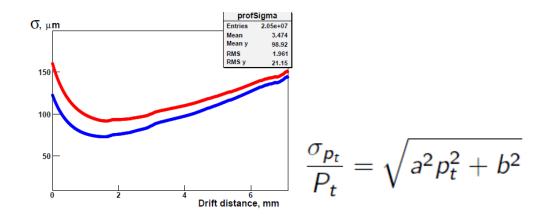
- $_{\scriptscriptstyle \succ}80\%~Ar$, 20% $CO_2 \!\rightarrow 30$ clusters / cm
- $ightarrow \sigma_{xy} \sim 50-100 \ \mu m$
- ⊳ σz ~ 300 μm
- $\succ \sigma_{\text{dE/dx}} \thicksim few \%$
- $_{\scriptscriptstyle \succ}$ E = 300–400 V / cm \rightarrow Vdr \sim 5cm / μs
- > P(p)min ~ 55 MeV/c

Cylindrical GEM

- Material budget ~ 1.5% X₀
- $rac{\sigma_{XY}}{\leq}$ 100 μ m / layer
- ⊳σ⊤≤7 ns
- > No $\sigma_{dE/dx}$ information
- > P(p)min ~ 55 MeV/c

Si-tracker

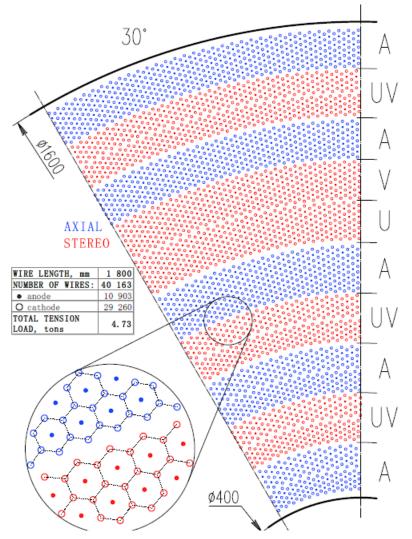
→ 4 layers
→ Material budget ~ 2.4% X₀
→ P(p)min ~ 80 MeV/c


Straw tubes

- ⊳ σxγ ≤100 μm
- $ightarrow P(p)_{min} \sim 55 \text{ MeV/c}$
- Rate ~ 10⁴-10⁵ track / (cm²/s)

Parameters

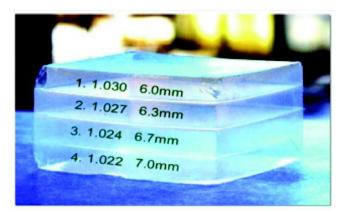
- $\scriptstyle \succ$ Dimensions; R_{in/ext} = 20 / 80 cm, L = 180 cm
- Small cell, drift distance < 8mm</p>
- > 10 903 cells, 29 260 field wires


Gas mixture 60% helium, 40% propane (He/C₃H₈) Drift time less than 350 ns (B = 1.5 T) Designed to operate at 2100 \div 2200 V expected gas gain ~ 3 \cdot 10₄

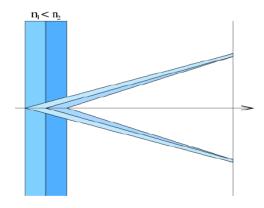
a = 0.26%, at $\sigma \simeq$ 100 $\mu m,$ X/X $_{\rm 0} \sim$ 0.006, b = 0.44%

Using inner tracker increase L, a = $0.26\% \rightarrow 0.16\%$

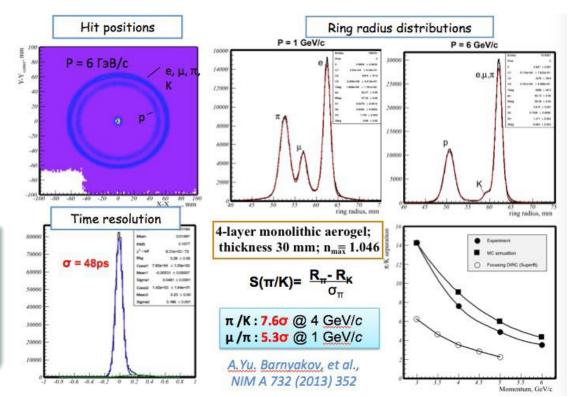
Drift Chamber



07.06.2019


Particle Identification - Focusing Aerogel RICH or ...

Tasks

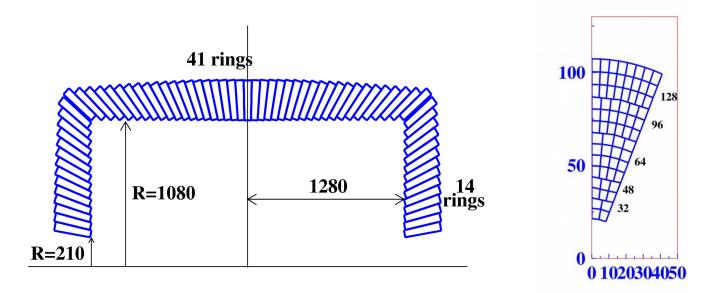

 $> \pi$ / K separation for P ≥ 0.6 GeV/c $> \mu$ / π separation for P ≤ 1.2 GeV/c

- Photon detectors $(3 \times 3 \text{ mm}^2)$:
 - Barrel SiPMs (16 m²)
 - Endcap SiPM, MCP PMT?, HAPD?
 (5 m²)
- $1 \div 2 \cdot 10^6$ channels (it depends on pitch)
- $\bullet~$ load 0.5÷1.0 MHz/channel
- Cooling system is needed

FARICH idea

07.06.2019

Calorimeter

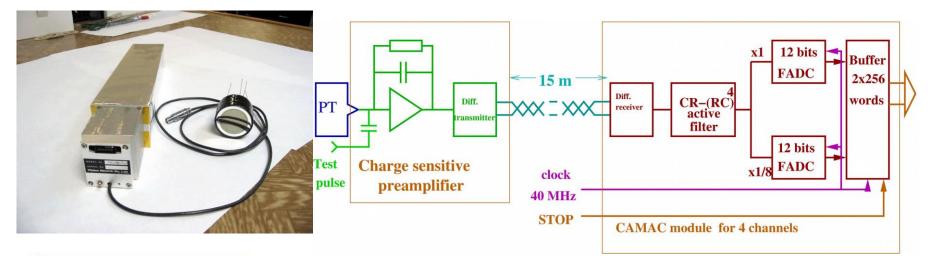

Tasks

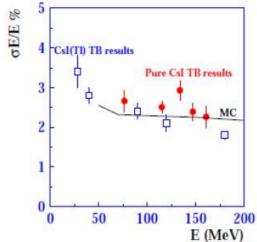
- > Detection of γ from 1 MeV to 2 GeV
- ➤ Good energy and spatial resolution
- Separation of electrons and hadrons
- ➤ Trigger formation

- Expected parameters (pure Csl) > $\sigma_E/E = 1.8\%$ at 1 GeV > $\sigma_Z \sim 6mm / \sqrt{E(GeV)}$ > 16-18 X₀ \rightarrow 30-34 cm > $\tau \sim 30ns$ (1µs for Csl(Tl))
- > 5248 crystals \rightarrow 26-31 tones
- > Photodetectors:
- Photopentodes,
- APD or SiPM (+ WLS)

	թ, g/cm ³	X ₀ , cm	λ _{em,} nm	n(λ _{em,})	N _{ph} /MeV	τ, ns
CsI(TI)	4.51	1.85	550	1.8	52000	1000
Pure Csl	4.51	1.85	305		2000-5000	20/1000
BGO (Bi ₄ Ge ₃ O ₁₂)	7.13	1.12	480	2.1	9000	300
LaBr ₃ (Ce)	5.1	1.95	380	1.9	63000	30
LSO (Lu2SiO5:Ce)	7.41	1.14	420	1.8	27000	40
LYSO ((Lu,Y)2SiO5:Ce)	7.1	1.20	400	1.8	33000	30
LuAP LuAIO ₃ (Ce)	8.34	1.08	365	1.9	20500	20
GSO (Gd2SiO5:Ce)	6.71	1.37	440		8000	40
GAGG (Gd3Al2Ga3O12(Ce))	6.63	1.59	520		46000	90

Super C-Tau calorimeter layout

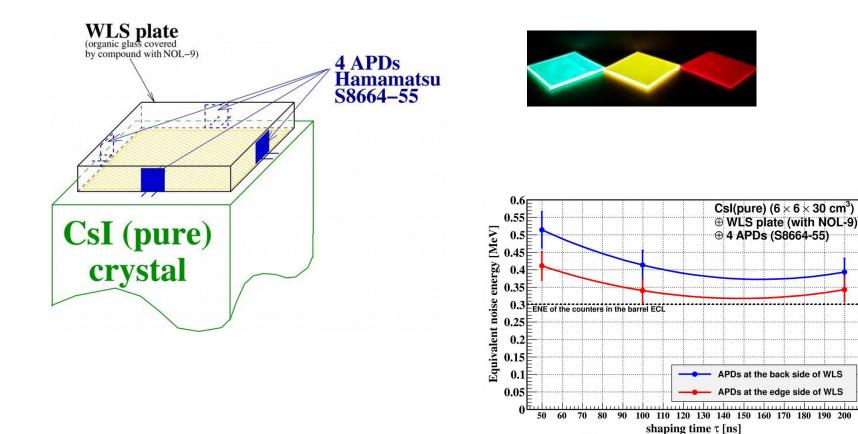

Crystal of truncated pyramidal form (small facet ~(5.5 x 5.5) cm2) with the length of 30/34 cm (16/18 X0)

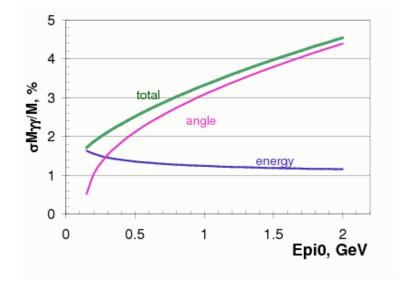

• The barrel part includes 5248 counters = 41 θ -rings x 128 counters, total weight is 26/31 tons

● Two endcap parts: 2 x 16 sectors x 68 = 2 x 1088 = 2176 counters, total weight is 10/12 tons

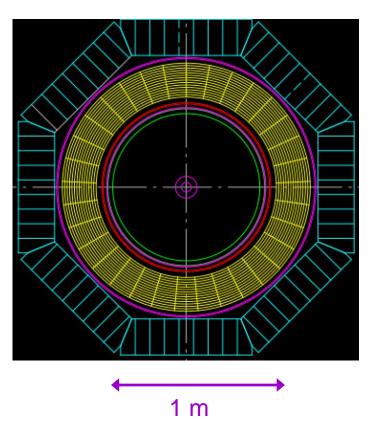
• The whole calorimeter: 7424 counters with the total weight of 36/43 tons

CsI(pure)+PP option (I)



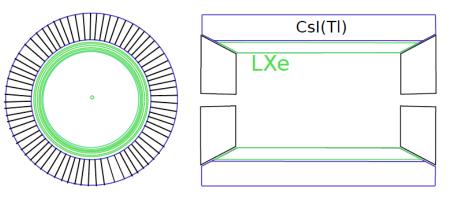

Due to the drop of the signal in magnetic field of 1.5 T by a factor of \sim 3, the ENE = 150 keV for B = 1.5 T

07.06.2019


CsI(pure)+WLS+4APD option (I)

Combined liquid-crystal calorimeter?

Liquid Xenon calorimeter $5.4X_0$ CsI(TI) crystal calorimeter $8.1 X_0$ Full width $13.5X_0$, sE/E = 3.6% at 1 GeV Coordinate resolution 2mmPassive material between calorimeters $0.25X_0$ Passive material in front of LXe $0.35X_0$ Barrel calorimeter of CMD-3 detector



07.06.2019

LXe option for C-Tau factory

- Excelent spatial resolution, better than 1mm (0.06)
- Reconstruction of the point of conversion -quanta to e+e- pair
- Electromagnetic shower profile reconstruction
- Time resolution of about 1 ns with towers
- Pileup noise suppression due to fine radial segmentation:
- Strip area 75*cm*2, pile-up rate 0.2 *MHz* per channel (2*MHz* for crystals option)
- Crystals with long scintillation time as Csl(Tl) may be used behind the LXe calorimeter
- Additional information of dE/dx per layer for particle identification

Combined calorimeter

Width $11 - 15 \text{ cm} (3 - 5 X_0) + 19 \text{ cm} \text{ Csl}$ mass 5 - 7 tonXe cost (2-5 \$/g): 10 - 25 M\$ crystals cost : 15M\$ 20, 000 channels of electronics

07.06.2019

Muon ID (µ /hadron-separation)

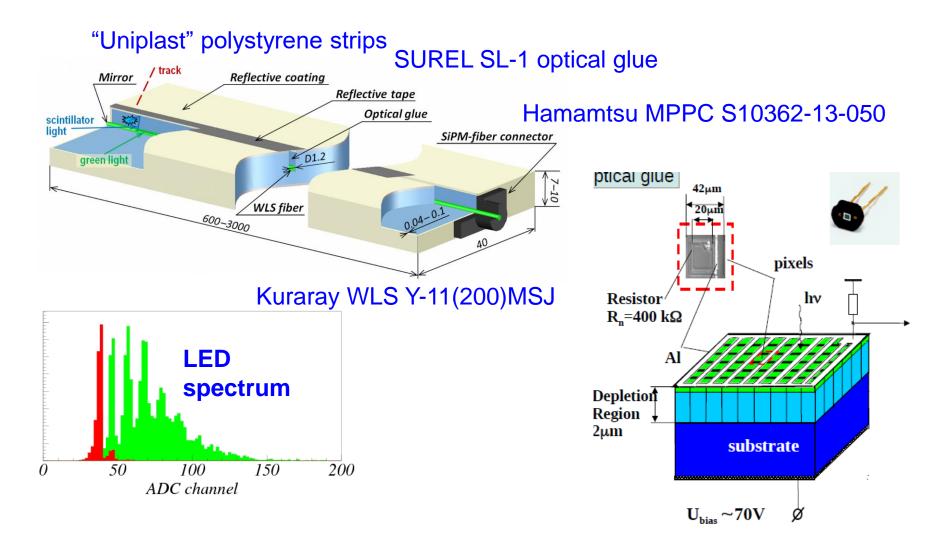
Parameters

- > Barrel 9 layers in the yoke (64% of 4π)
- > Endcap 8 layers in the yoke (30% of 4π)
- ➤ Stotal ~ 1000 m²

Current detectors

- ➤ BaBar 64% efficiency, 2% p fake rate at 0.5 2 GeV/c
- ➤ BaBar 90% efficiency, 2% p fake rate for P > 1 GeV/c
- > KEDR 95% efficeincy, 5% p fake rate for P > 1 GeV/c Pion fake rate must be suppressed by factor 100. It is
- necessary to use an additional system, e.g. FARICH, TOF

with σ_T < 30 ps.


Gas tubes

- ➤ Used by SND, KEDR, PANDA
- ➤ ageing? Rate capability?

RPC

Used by BaBar, Belle
 Ageing, complex electronic required

Scintillator - WLS - SiPM

07.06.2019

Status of the project

- Detailed physics program is developed.
- CDR was issued in 2011 and updated in 2017.
- **R&D** for accelerator and detector is in progress.
- Preliminary civil engineering and infrastructure design is completed.
- CERN, IHEP, INFN, KEK and other organizations expressed their interest in the project.
- By the end of 2019 we have to present the TDR (may be not final version)
- Now we have to form the international collaboration that is certainly required to apply for funding.

Conclusion

- A few generations of colliders and detectors successfully operated at Budker INP with world-wide recognized contributions to particle physics
- Experiment on Super c-τ factory has rich physics program which is complementary to Belle II and LHCb
- Physics program is developed.
- CDR was issued in 2011 and updated in 2017.
- Project is supported (not funded yet) by Russian government, R&D is ongoing
- Budker INP successfully collaborates in many outstanding experiments in other lab's and we hope our colleagues will join to SCTF project