Higgs boson production in ultraperipheral ion collisions at the LHC, HE-LHC, FCC

PHOTON'19 Intl. Conference Frascati, June 2019 David d'Enterria (CERN) Daniel Martins (UFRJ, Rio de Janeiro) Patricia Rebello (UERJ, Rio de Janeiro)

Based on: D.d'E. &J.Ph. Lansberg, PRD 81 (2010) 014004. D.d'E, D.E. Martins, P. Rebello, CERN Proc. 1 (2018) 33; and arXiv:1904.11936 [hep-ph]

Higgs boson production in $\gamma \gamma$ collisions

The s-channel production of the Higgs boson in photon-photon collisions has always been one of the key channels of study at a photon collider (Compton-backscattering laser-light off e[±] beams):

→ Independent measurement of the H-γ loop-induced coupling based not on the Higgs decay (LHC) but on its s-channel production mode.

→ Model-independent extraction of total Higgs width combining $\Gamma(H \rightarrow \gamma \gamma)$ partial width: $\sigma(\gamma \gamma \rightarrow H \rightarrow b\bar{b}) \propto \Gamma(H \rightarrow \gamma \gamma) \cdot BR(H \rightarrow b\bar{b})$ with BR(H $\rightarrow \gamma \gamma$) from LHC:

 $\Gamma_{\rm H}^{\rm tot} = \Gamma({\rm H} \to \gamma \gamma) / {\rm BR}({\rm H} \to \gamma \gamma)$

Before the γ -collider comes to reality, is it possible to observe it using the equiv. γ fluxes of e.m. p,A interactions at LHC or future colliders?

CERN Future Circular Collider (FCC) project

The next collider project at CERN:

- FCC: 100 km ring, Nb₃Sn 16 T magnets, LHC used as injector:
 - pp at \sqrt{s} =100 TeV, L~2x10³⁵, L_{int}= 2 ab⁻¹/yr plus pPb, PbPb at \sqrt{s}_{NN} = 39–63 TeV
 - e⁺e⁻ option (before pp) at √s=90–350 GeV L≈10³⁵–4·10³⁶, L_{int}=1–40 ab⁻¹/yr for H, Z

<u>HE-LHC</u>: LHC + 16 T magnets:
 pp at √s=27 TeV, PbPb at √s_{NN}=10.6 TeV

Photon-photon collisions at colliders

Electromagnetic ultra-peripheral collisions (UPCs): b_{min} > R_A+R_B

HE ions generate huge EM fields (10¹⁴ T) from coherent action of Z=82 p:

Weizsäcker-Williams (EPA) power-law photon flux:

Photon-photon collisions at the LHC

Electromagnetic ultra-peripheral collisions (UPCs): b_{min} > R_A+R_B

• HE ions generate huge EM fields (10^{14} T) from coherent action of Z=82 p:

 Huge photon fluxes: σ(γ -γ) ~ Z⁴ (~5·10⁷ for PbPb) larger than p,e[±]

 Beam-energy dependence:

Photon luminosities increase as $\infty \log^3(\sqrt{s})$

Quasi-real photons (coherence): $Q \approx 1/R \approx 0.06 \text{ GeV}$ (Pb), 0.28 GeV (p)

Maximum γ energies (LHC):	$\omega < \omega_{max} \approx \frac{1}{R}$	≈ <mark>80 GeV</mark> (Pb)	, ≈ 2.5 TeV	(p)
----------------------------------	---	----------------------------	-------------	-----

System	$\sqrt{s_{\rm NN}}$ (TeV)	γ	<i>R</i> _A (fm)	$\omega_{\rm max}$ (GeV)	$\sqrt{s_{\gamma\gamma}^{\max}}$ (GeV)
<i>p</i> - <i>p</i>	14	7455	0.7	2450	4500
<i>p</i> -Pb	8.8	4690	7.1	130	260
Pb-Pb	5.5	2930	7.1	80	160

Photon-photon collisions at the FCC

Electromagnetic ultra-peripheral collisions (UPCs): b_{min} > R_A+R_B

• HE ions generate huge EM fields (10^{14} T) from coherent action of Z=82 p:

 Huge photon fluxes: σ(γ -γ) ~ Z⁴ (~5·10⁷ for PbPb) larger than p,e[±]

 Beam-energy dependence:

Photon luminosities increase as ∝log³(√s)

Quasi-real photons (coherence): $Q \approx 1/R \approx 0.06 \text{ GeV}$ (Pb), 0.28 GeV (p)

■ Maximum γ energies (FCC): $\omega < \omega_{max} \approx \frac{\gamma}{R} \approx 0.6$ TeV (Pb), ≈ 18 TeV (p)

System	$\sqrt{s_{_{ m NN}}}$ (TeV)	$\mathcal{L}_{AB} \cdot \Delta t$ (per year)	$ \begin{array}{c} \gamma \\ (\times 10^3) \end{array} $	$\omega_{\rm max}$ (TeV)	$rac{\sqrt{s_{\gamma\gamma}^{ m max}}}{ m (TeV)}$
p-p	100	$1 { m ~fb^{-1}}$	53.	17.6	35.2
p-Pb	64	1 pb^{-1}	33.5	0.95	1.9
Pb-Pb	39	5 nb^{-1}	21.	0.60	1.2

Effective γγ luminosities in UPCs at LHC/FCC

Effective $\gamma\gamma$ lumi vs. $\sqrt{s_{\gamma\gamma}}$. Threshold m_{Higgs} surpassed for first time

Theoretical setup

- MadGraph 5.0 (v.2.6.5) MC event generator.
 - \rightarrow Equivalent photon approximation (EPA):

$$\sigma_{A_1A_2 \to H} = \int dx_1 \, dx_1 \, f_{\gamma/A_1}(x_1) f_{\gamma/A_2}(x_2) \hat{\sigma}_{\gamma\gamma \to H}$$

 \rightarrow Photon fluxes:

p: (elastic FF)
$$f_{\gamma/p}(x) = \frac{\alpha}{\pi} \frac{1 - x + 1/2x^2}{x} \int_{Q_{\min}^2}^{\infty} \frac{Q^2 - Q_{\min}^2}{Q^4} |F(Q^2)|^2 dQ^2$$

A: $f_{\gamma/A}(x) = \frac{\alpha Z^2}{\pi} \frac{1}{x} \left[2x_i K_0(x_i) K_1(x_i) - x_i^2 (K_1^2(x_i) - K_0^2(x_i)) \right]$

 $\rightarrow \sigma(\gamma \gamma \rightarrow H)$ cross section in the HEFT-approximation:

$$\mathcal{L}_{\gamma\gamma\mu}^{\text{eff}} = -\frac{1}{4}g F_{\mu\nu}F^{\mu\nu}H$$

- HDECAY: BR(H→bb) ≈ 56%
- Backgrounds (γγ→ bb, cc, qq) directly computed by MadGraph 5.0.
- PYTHIA-8.2: Shower & hadronization of b (and c, uds) quarks.
- FastJet: Durham jet algo (exclusive n_i=2)

- 1) TH uncertainties:~20% from form-factors, nuclear overlap,...
- 2) Semielastic production (×2 yields; p,Pb breakup) not included.

b,c,q

b,c,q

Η

b

$\gamma \gamma \rightarrow$ Higgs x-sections in A-A, p-A, p-p UPCs

■ Total $\sigma(\gamma \gamma \rightarrow H)$ vs. c.m. energy:

compared to p-p & lighter ions.

■ Total γγ → H yields vs. c.m. energy per system: 0.1–0.4 Higgs/month at the LHC 1.5–2.5 Higgs/month at HE-LHC

$\gamma \gamma \rightarrow$ Higgs yields in A-A, p-A, p-p UPCs

Total Higgs cross sections & yields per colliding system:

	System	$\sqrt{S_{_{\rm NN}}}$	\mathscr{L}_{int}	$E_{\text{beam1}} + E_{\text{beam2}}$	γ_L	R_A	$\omega_{\rm max}$	$\sqrt{s_{\gamma \gamma}^{\max}}$	$\sigma(\gamma\gamma \rightarrow H)$	$N(\gamma\gamma \rightarrow H)$
LHC	Pb-Pb	5.5 TeV	10 nb ⁻¹	2.75 + 2.75 TeV	2950	7.1 fm	80 GeV	160 GeV	15 pb	0.15
	Xe-Xe	5.86 TeV	30 nb ⁻¹	2.93 + 2.93 TeV	3150	6.1 fm	100 GeV	200 GeV	7 pb	0.21
	Kr-Kr	6.46 TeV	120 nb ⁻¹	3.23 + 3.23 TeV	3470	5.1 fm	136 GeV	272 GeV	3 pb	0.36
20	Ar-Ar	6.3 TeV	1.1 pb ⁻¹	3.15 + 3.15 TeV	3400	4.1 fm	165 GeV	330 GeV	0.36 pb	0.40
	0-0	7.0 TeV	3.0 pb ⁻¹	3.5 + 3.5 TeV	3750	3.1 fm	240 GeV	490 GeV	35 fb	0.11
	p-Pb	8.8 TeV	1 pb ⁻¹	7.0 + 2.75 TeV	7450, 2950	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV	0.17 pb	0.17
	р-р	14 TeV	1 fb ⁻¹	7.0 + 7.0 TeV	7450	0.7 fm	2.45 TeV	4.5 TeV	0.18 fb	0.18
	Pb-Pb	10.6 TeV	10 nb ⁻¹	5.3 + 5.3 TeV	5700	7.1 fm	160 GeV	320 GeV	150 pb	1.5
	Xe-Xe	11.5 TeV	30 nb ⁻¹	5.75 + 5.75 TeV	6200	6.1 fm	200 GeV	400 GeV	60 pb	1.8
пс-	Kr-Kr	12.5 TeV	120 nb ⁻¹	6.25 + 6.25 TeV	6700	5.1 fm	260 GeV	530 GeV	20 pb	2.4
LHC	Ar-Ar	12.1 TeV	1.1 pb ⁻¹	6.05 + 6.05 TeV	6500	4.1 fm	320 GeV	640 GeV	1.7 pb	1.9
	0-0	13.5 TeV	3.0 pb ⁻¹	6.75 + 6.75 TeV	7300	3.1 fm	470 GeV	940 GeV	0.11 pb	0.33
	p-Pb	18.8 TeV	1 pb ⁻¹	13.5 + 5.3 TeV	14 400, 5700	0.7, 7.1 fm	4.1 TeV, 160 GeV	4.2 TeV	0.45 pb	0.45
FCC	р-р	27 TeV	1 fb ⁻¹	13.5 + 13.5 TeV	14 400	0.7 fm	4.1 TeV	8.2 TeV	0.30 fb	0.30
	Pb-Pb	39 TeV	110 nb ⁻¹	19.5 + 19.5 TeV	21 000	7.1 fm	600 GeV	1.2 TeV	1.8 nb	200
	p-Pb	63 TeV	29 pb ⁻¹	50. + 19.5 TeV	53 300, 21 000	0.7,7.1 fm	15.2 TeV, 600 GeV	15.8 TeV	1.5 pb	45
	p-p	100 TeV	1 fb ⁻¹	50. + 50. TeV	53 300	0.7 fm	15.2 TeV	30.5 TeV	0.70 fb	0.70

- $ightarrow Z^4$ factor enhances significantly the $\gamma\gamma$ x-section for Pb-Pb compared to lighter systems: $\sigma(H)=15 \text{ pb} (LHC)_{\times 10} 150 \text{ pb} (HE-LHC)_{\times 10} 1.8 \text{ nb} (FCC).$
- ► Larger beam lumis for lighter systems ($L_{NN} \approx 1 \text{ fb}^{-1}$ compared to $\approx 0.1 \text{ fb}^{-1}$) favor Ar-Ar (~0.4 Higgs/mo) at LHC and Xe-Xe(~2 Higgs/mo) at HE-LHC.
- ► FCC: Large x-sections & lumis: ~45–200 Higgs/mo. in pPb, PbPb

$\gamma \gamma \rightarrow b \bar{b}, c \bar{c}, q \bar{q}$ irreducible backgrounds

Heavy-Q pair continuum in photon-photon collisions:

System	$\sqrt{S_{_{NN}}}$	$\sigma(\gamma \gamma \rightarrow b\bar{b}) \text{ (pb)}$		$\sigma(\gamma \gamma \rightarrow c \bar{c}) \text{ (pb)}$	$\sigma(\gamma \gamma \rightarrow q \bar{q}) \ (\text{pb})$	$\sigma(\gamma \gamma \rightarrow t\bar{t}) \text{ (pb)}$
		$[m_{b\bar{b}}=100-140 \text{ GeV/c}^2]$		$[m_{c\bar{c}}=100-140 \text{ GeV}/c^2]$	$[m_{q\bar{q}}=100-140 \text{ GeV/c}^2]$	[all $m_{t\bar{t}}$]
	(TeV)	elastic	semielastic	elastic	elastic	elastic
рр	14	$3.4 \cdot 10^{-3}$	$1.1 \cdot 10^{-2}$	$7.9 \cdot 10^{-2}$	0.2	0.36.10-3
pО	9.9	6.8.10 ⁻²	9.5.10 ⁻²	1.6	3.9	$2.7 \cdot 10^{-3}$
<i>p</i> Ar	9.4	0.27	0.36	6.1	15.8	$8.1 \cdot 10^{-3}$
p Pb	8.8	3.4	4.5	78.	200.	$6.2 \cdot 10^{-2}$
PbPb	5.5	420	_	$9.4 \cdot 10^3$	$2.5 \cdot 10^4$	1.8.10 ⁻²

- 1) bbar continuum: $\sim 25 \times \sigma$ (Higgs)
- 2) ccbar continuum: ~600 times Higgs
 ~1.5×σ(Higgs) after double-mistag prob.
- 3) qqbar continuum: ~1600 times Higgs
 ~1/3×σ(Higgs) after double-mistag prob..

UPC $\gamma \gamma \rightarrow$ Higgs data analysis (I)

- Trigger signal signature: 2 exclusive back-to-back high-p_T (b-)jets
- Experimental reconstruction performance:
 - b-jets reconstructed over $|\eta| < 2$ (5) at LHC (FCC).
 - 70% b-jet tagging efficiency, 5% (1.5%) b-jet mistagging probability for charm (light-flavour q) quarks.
 - 7% b-jet energy resolution (mass resolution $\sigma_{ii} \approx 6$ GeV at Higgs peak)
- Acceptance & efficiency losses:
 - Acc \approx 0.8 for signal (central jets), 0.3 for background (fwd-bckwd jets)
 - Eff \approx 0.5 for signal, 1/400 (for bbbar), 1/4500 (for ccbar)

Luminosities:

- Nominal p-A, A-A lumis at LHC, HE-LHC/FCC (from CDRs)
 Note: Negligible pileup running in ion-ion mode.
- p-p: 1 fb⁻¹ (1% of L_{int}, at possibly low pileup). Exploiting full pp L_{int}
 requires proton taggers at 420m in LHC tunnel.
- After all these cuts only $\gamma\gamma \rightarrow H(bb)$, $\gamma\gamma \rightarrow bb$ continuum remain...

UPC $\gamma \gamma \rightarrow$ Higgs data analysis (II)

Further kinematical cuts:

b-jet transverse momentum cut:

At least 1 jet with

 $p_{T} \approx m_{H}/2 \approx 52 - 67 \text{ GeV/c}$

Eff ≈ 0.5 for signal, 1/20 (for bbbar)

b-jet acoplanarity cut:

 $|\cos(\theta)| < 0.5$ in the helicity-frame.

Higgs decays: isotropic Continuum: u-,t-exchange (fwd/bckw)

Further S/B increase.

UPC $\gamma \gamma \rightarrow$ Higgs data analysis (II)

Event count flow for signal & backgds after each set of cuts:

Ar-Ar at $\sqrt{s_{NN}} = 6.3 \text{ TeV}$	cross section	visible cross section	N _{evts}
	(b-jet (mis)tag effic.)	after η^j , p_T^j , $ \cos \theta_{jj} $, m_{jj} cuts	$(\mathscr{L}_{int} = 1.1 \text{ pb}^{-1})$
$\gamma \gamma \rightarrow H \rightarrow b \bar{b}$	0.20 pb (0.10 pb)	0.045 pb	0.05
$\gamma \gamma \rightarrow b \bar{b} \ [m_{b \bar{b}} = 100 - 150 \text{ GeV}]$	8.2 pb (4.0 pb)	0.06 pb	0.06
$\gamma \gamma \rightarrow c \bar{c} \ [m_{c \bar{c}} = 100 - 150 \text{ GeV}]$	61 pb (0.15 pb)	0.005 pb	0.006
$\gamma \gamma \rightarrow q \bar{q} \ [m_{q \bar{q}} = 100 - 150 \text{ GeV}]$	70 pb (0.016 pb)	< 10 ⁻³	< 10 ⁻³
Kr-Kr at $\sqrt{s_{NN}} = 12.5 \text{ TeV}$			N _{evts}
			$(\mathscr{L}_{int} = 0.12 \text{ pb}^{-1})$
$\gamma \gamma \rightarrow H \rightarrow b\bar{b}$	11 pb (5.5 pb)	2.5 pb	0.30
$\gamma \gamma \rightarrow b \bar{b} \ [m_{b \bar{b}} = 100 - 150 \text{ GeV}]$	364 pb (178 pb)	2.8 pb	0.34
$\gamma \gamma \rightarrow c \bar{c} \ [m_{c \bar{c}} = 100 - 150 \text{ GeV}]$	2.7 nb (6.7 pb)	0.24 pb	0.03
$\gamma \gamma ightarrow q \bar{q} \ [m_{q \bar{q}} = 100 - 150 \text{ GeV}]$	3.1 nb (0.70 pb)	< 10 ⁻³	< 10 ⁻⁴
Pb-Pb at $\sqrt{s_{NN}} = 39 \text{ TeV}$			N _{evts}
	I		$(\mathscr{L}_{int} = 110 \text{ nb}^{-1})$
$\gamma \gamma \to H \to b \bar{b}$	1.0 nb (0.50 nb)	0.19 nb	21.1
$\gamma \gamma \rightarrow b \bar{b} \ [m_{b \bar{b}} = 100 - 150 \text{ GeV}]$	24.3 nb (11.9 nb)	0.23 nb	25.7
$\gamma \gamma ightarrow c ar{c} \ [m_{c ar{c}} = 100 - 150 \ { m GeV}]$	525 nb (1.31 nb)	0.02 nb	2.3
$\gamma \gamma \rightarrow q \bar{q} \ [m_{q \bar{q}} = 100 - 150 \text{ GeV}]$	590 nb (0.13 nb)	0.002 nb	0.25
p-Pb at $\sqrt{s_{NN}} = 63 \text{ TeV}$			N _{evts}
			$(\mathscr{L}_{int} = 29 \text{ pb}^{-1})$
$\gamma \gamma \rightarrow H \rightarrow b\bar{b}$	0.87 pb (0.42 pb)	0.16 pb	4.8
$\gamma \gamma \rightarrow b \bar{b} \ [m_{b \bar{b}} = 100 - 150 \text{ GeV}]$	21.8 pb (10.7 pb)	0.22 pb	6.3
$\gamma \gamma ightarrow c \bar{c} \ [m_{c \bar{c}} = 100 - 150 \ { m GeV}]$	410 pb (1.03 pb)	0.011 pb	0.3
$\gamma \gamma \rightarrow q \bar{q} \ [m_{q \bar{q}} = 100 - 150 \text{ GeV}]$	510 pb (0.114 pb)	0.001 pb	0.04

■ Final Signal/Backgd ~1, but N_{Higgs}>>1 only at FCC

Expected dijet mass spectrum (LHC, HE-LHC)

What integrated luminosity is needed for evidence (significance $S/\sqrt{B} \sim 3\sigma$) of Higgs signal on top of continuum backgrounds after cuts:

A factor $\times 10$ more integrated lumi easily reached by running for the duration of a pp (not 1-month heavy-ion) run. But, UPC Higgs observation will very likely remain elusive at the HL-LHC and HE-LHC.

Note: More advanced multivariate studies (and parametric-shape-based significances), rather

than simple "cut-based" criteria used here, would enhance S/\sqrt{B} but not by $\times 10$ factor. PHOTON'19, Frascati, June 2019

Expected dijet mass spectrum (FCC)

5 σ Higgs observation on top of continuum backgrounds after cuts:

Pb-Pb at 6.3 TeV ($\times 2 L_{int}$):

p-Pb at 6.3 TeV (×8 L_{int}):

~20 (5) signal counts above backgds after cuts in Pb-Pb (p-Pb) collisions

Observation at 5σ-level achievable in the first FCC run by combining 2 experiments in Pb-Pb (1 month), and by running for about 8 months (or 4 months and combining 2 experiments) in p-Pb.

Conclusions (I)

- Is s-channel Higgs boson production observable in UPCs ? p-p, p-A, A-A → $\gamma \gamma \rightarrow$ H(bb), $\sqrt{s_{NN}}$ = 3–100 TeV (LHC, HE-LHC, FCC)
- **Cross sections** computed with MadGraph 5.0 (EPA ions + HEFT):

LHC: Highest x-sections for Pb-Pb (15 pb). Largest rates for Ar-Ar (~0.4 Higgs/mo.) HE-LHC: Highest x-sections for Pb-Pb (150 pb). Largest rates for Kr-Kr (~2 Higgs/mo.) FCC: Very large x-sections. p-Pb, Pb-Pb rates: 45–200 Higgs/mo.

Conclusions (II)

- Is s-channel Higgs boson production observable in UPCs ?
 p-p, p-A, A-A → γ γ → H(bb), √s_{NN} = 3–100 TeV (LHC, HE-LHC, FCC)
 Expected yields for signal & γ γ → bb,cc,qq backgds after analysis cuts:
 - LHC: 3σ evidence requires ×200 more integrated luminosities in Ar-Ar HE-LHC: 3σ evidence requires ×30 more integrated luminosities in Kr-Kr FCC: 20 (5) signal counts after cuts in Pb-Pb (p-Pb) colls. 5σ warranted in 1st year.

Back-up slides