Isolated Photon Production in pp and p-Pb Collisions at the LHC measured with the ALICE experiment

Erwann Masson

Laboratoire Subatech, Nantes

On behalf of the ALICE Collaboration

PHOTON 2019, Frascati

Photons in hadron collisions

Photons in hadron collisions

Photons in hadron collisions

[PRD 82, 014015 (2010)]

 $\gamma_{\rm direct}$

How can we access $\gamma_{2\rightarrow 2}$ photons?

[PRD 82, 014015 (2010)]

How can we access $\gamma_{\mathbf{2} \to \mathbf{2}}$ photons?

 $ightharpoonup \gamma_{2\rightarrow 2}$ emitted back to the other hard products ightharpoonup selection using an **isolation method**

How can we access $\gamma_{2\rightarrow 2}$ photons?

 $ightharpoonup \gamma_{2\rightarrow 2}$ emitted back to the other hard products \rightarrow selection using an **isolation method**

Isolated photons

▶ Isolation cone of radius R_{cone} defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma})$

$$R_{
m cone} = \sqrt{(\eta - \eta_{\gamma})^2 + (\varphi - \varphi_{\gamma})^2}$$

▶ Photon declared isolated if $p_T^{iso} < p_T^{max}$ (typical values $\rightarrow R_{cone} = 0.4$, $p_T^{max} = 2 \text{ GeV/}c$)

How can we access $\gamma_{2\rightarrow 2}$ photons?

 $ightharpoonup \gamma_{2\rightarrow 2}$ emitted back to the other hard products \rightarrow selection using an **isolation method**

<u>Isol</u>ated photons

▶ Isolation cone of radius R_{cone} defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma})$

$$R_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2}$$

▶ Photon declared **isolated** if $p_T^{iso} < p_T^{max}$ (typical values $\rightarrow R_{cone} = 0.4$, $p_T^{max} = 2 \text{ GeV}/c$)

[PRD 82, 014015 (2010)]

Photon reconstruction with ALICE (Run I configuration)

Photon reconstruction with ALICE (Run I configuration)

Calorimetry

EMCal Lead/scintillator sampling layers

 $|\eta| <$ 0.7, 80° $< \varphi <$ 180°

PHOS Lead tungstate crystals

 $|\eta| <$ 0.12, 260° $< \varphi <$ 320°

Photon reconstruction with ALICE (Run I configuration)

Tracking ($|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$)

ITS Primary/secondary vertex determination

TPC Tracking and particle identification (PID)

Calorimetry

EMCal Lead/scintillator sampling layers

 $|\eta| < 0.7,80^{\circ} < \varphi < 180^{\circ}$

PHOS Lead tungstate crystals

 $|\eta|<0.12,260^{\circ}<\varphi<320^{\circ}$

Photon reconstruction with ALICE (Run I configuration)

Tracking ($|\eta| < 0.9, 0^{\circ} < \varphi < 360^{\circ}$)

ITS Primary/secondary vertex determination
TPC Tracking and particle identification (PID)

Triggering

VO Minimum bias, luminosity and centrality measurement + extended p_T reach thanks to EMCal and PHOS triggering capabilities

Calorimetry

EMCal Lead/scintillator sampling layers

 $|\eta| <$ 0.7, 80° < arphi < 180°

PHOS Lead tungstate crystals

 $|\eta| <$ 0.12, 260° $< \varphi <$ 320°

Isolated Photon Production in pp and p-Pb Collisions at the LHC measured with the ALICE experiment - PHOTON 2019, Frascati

Photon reconstruction with EMCal

Specifications

- ► 12 supermodules (10 in this work) → 12288 cells with a 6 × 6 cm² area (4.28 m from IP)
- ▶ Covers $|\eta| <$ **0.7** and **100°** in azimuth (φ)
- ► Each cell → 153 lead/scintillator alternating layers (24.6 cm thick in total)
- ▶ Energy/position resolutions \rightarrow 4.8 %/E \oplus 11.3 %/ \sqrt{E} \oplus 1.7 % and 5.3 mm/ \sqrt{E} \oplus 1.5 mm
- ► Used as **trigger detector** (photons/jets)

Photon reconstruction with EMCal

Specifications

- 12 supermodules (10 in this work) → 12288 cells with a 6 × 6 cm² area (4.28 m from IP)
- ▶ Covers $|\eta| <$ **0.7** and **100°** in azimuth (φ)
- ► Each cell → **153 lead/scintillator** alternating layers (24.6 cm thick in total)
- ▶ Energy/position resolutions \rightarrow 4.8 %/E \oplus 11.3 %/ \sqrt{E} \oplus 1.7 % and 5.3 mm/ \sqrt{E} \oplus 1.5 mm
- ► Used as **trigger detector** (photons/jets)

Photon selection

Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially (ALICE γ_{direct} parametrisation)

$$|\Delta \eta| \le 0.010 + (p_T^{track} + 4.07)^{-2.5}$$

 $|\Delta \varphi| \le 0.015 + (p_T^{track} + 3.65)^{-2}$

Photon selection

Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially (ALICE γ_{direct} parametrisation)

$$|\Delta \eta| \le 0.010 + (p_{\text{T}}^{\text{track}} + 4.07)^{-2.5}$$

 $|\Delta \varphi| \le 0.015 + (p_{\text{T}}^{\text{track}} + 3.65)^{-2}$

Candidate photons (shower shape cuts)

► Clusters **shower shape** σ_{long}^2 is used to reject the γ_{decay} component

$$0.1 < \sigma_{\rm long}^2 < \left(\sigma_{\rm long}^2\right)_{\rm max}$$

Photon selection

Motivation and method

Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially (ALICE γ_{direct} parametrisation)

$$|\Delta \eta| \le 0.010 + (p_{\text{T}}^{\text{track}} + 4.07)^{-2.5}$$

 $|\Delta \varphi| \le 0.015 + (p_{\text{T}}^{\text{track}} + 3.65)^{-2}$

Candidate photons (shower shape cuts)

▶ Clusters **shower shape** $\sigma_{\mathrm{long}}^{2}$ is used to reject the γ_{decay} component

$$0.1 < \sigma_{\rm long}^2 < \left(\sigma_{\rm long}^2\right)_{\rm max}$$

 $oldsymbol{lack}$ Not discriminant above \sim 20 GeV

 $\gamma_{
m decay}$

Signal extraction

The ABCD method [PRD 83, 052005 (2011)]

- ► Mainly **signal** region
 - = isolated, narrow clusters (iso, n)
- ► Mainly **background** regions
 - **B** = isolated, wide clusters (iso, w)
 - = non-isolated, narrow clusters (iso, n)
 - \square = non-isolated, wide clusters (\overline{iso} , w)

Signal extraction

- Isolation with neutral + charged particles
- ► Isolation criterion (△), (B) $\rightarrow p_{T}^{iso} < 2 \text{ GeV/} c$
- ► Anti-isolation criterion (**6**), **1**) $\rightarrow p_{T}^{\overline{|so}|} > 3 \text{ GeV/} c$
- ► Fraction of region () clusters truly induced by $\gamma_{2\rightarrow2}\rightarrow$ data-driven purity P_{dd} of the $N_n^{\rm iso}$ sample

The ABCD method [PRD 83, 052005 (2011)]

- Mainly signal region
 - A = isolated, narrow clusters (iso, n)
- Mainly background regions
 - **B** = isolated, wide clusters (iso, w)
 - = non-isolated, narrow clusters (iso, n)
 - D = non-isolated, wide clusters (iso, w)

Particle quantities

- $S = \gamma_{\text{direct}} \text{ signal}$
- ▶ $B = \text{background} (\pi^0, \eta, \text{their } \gamma_{\text{decay}}, \text{etc.})$
- $ightharpoonup N = S + B \rightarrow what is measured$

$$P_{\text{dd}} = rac{\mathbf{S}_{\text{n}}^{\text{iso}}}{\mathbf{N}_{\text{n}}^{\text{iso}}} = 1 - rac{\mathbf{B}_{\text{n}}^{\text{iso}}}{\mathbf{N}_{\text{n}}^{\text{iso}}}$$

Purity estimation

▶ Data-driven background (and purity) estimation in the signal region 🔕

Two strong assumptions

- ▶ Only background clusters in background regions
 - (B, and D)
- Similar background isolation fraction in narrow (▲).
 ⑥) and wide (⑥).
 ⑥) cluster regions

$$\textit{B}_{\text{n}}^{\text{iso}} = \frac{\textit{N}_{\text{w}}^{\text{iso}} \times \textit{N}_{\text{n}}^{\overline{\text{iso}}}}{\textit{N}_{\text{w}}^{\overline{\text{iso}}}} \ \Rightarrow \ \textit{P}_{\text{dd}} = 1 - \frac{\textit{B}_{\text{n}}^{\text{iso}}}{\textit{N}_{\text{n}}^{\overline{\text{iso}}}} = 1 - \left(\frac{\textit{N}_{\text{w}}^{\text{iso}} \times \textit{N}_{\text{n}}^{\overline{\text{iso}}}}{\textit{N}_{\text{iso}}^{\overline{\text{iso}}} \times \textit{N}_{\text{n}}^{\overline{\text{iso}}}}\right)_{\text{data}}$$

Purity estimation

▶ Data-driven background (and purity) estimation in the signal region 🔕

Two strong assumptions

- ▶ Only background clusters in background regions
 - (**B**, **0** and **D**)
- ► Similar background isolation fraction in narrow (△),
 - (B) and wide (B, D) cluster regions

Two corrections with PYTHIA MC [JHEP 05, 026 (2006)]

- Possibly signal leakage in background regions (B), (D) and (D)
- ightharpoonup Background isolation fraction depending on the shower shape σ_{long}^2
- ▶ MC jet-jet (JJ, **background**) and γ -jet (GJ, **signal**) → used to compute a **correction factor** α

$$\alpha = \underbrace{\frac{\left(B_{\text{n}}^{\text{Iso}}\right)_{\text{JJ}}}{\left(B_{\text{n}}^{\text{Iso}}\right)_{\text{MC mix.}}}}_{\text{estimated bkg.}} \Rightarrow P = 1 - \underbrace{\left(\frac{B_{\text{n}}^{\text{Iso}} \times N_{\text{m}}^{\text{Iso}}}{N_{\text{w}}^{\text{Iso}} \times N_{\text{n}}^{\text{Iso}}}\right)_{\text{MC}}}_{\alpha} \times \left(\frac{N_{\text{w}}^{\text{Iso}} \times N_{\text{n}}^{\text{Iso}}}{N_{\text{w}}^{\text{Iso}} \times N_{\text{n}}^{\text{Iso}}}\right)_{\text{data}}$$

Results in pp collisions at $\sqrt{s} = 7$ TeV – Purity and efficiency

[arXiv:1906.01371] - Submitted to EPJC

Specification

- ▶ 2011 data sets, EMCal Level-0 trigger (5.5 GeV) \rightarrow photons measured in 10–60 GeV/c
- ► Integrated luminosity $\rightarrow \mathcal{L}_{int} = 473 \pm 28 \text{ (stat.)} \pm 17 \text{ (syst.)} \text{ nb}^{-1}$
- lacktriangle Photons selected in $|\eta^\gamma| <$ 0.27 and $\Delta arphi^\gamma =$ 0.9 rad

- ▶ Purity ranging **from 20% to 60%** → interplay between physics and detector effects
- \blacktriangleright Total efficiency \sim **60%** \rightarrow correcting data from reconstruction, ID and isolation inefficiencies

Results in pp collisions at $\sqrt{s}=$ 7 TeV – Cross section

[arXiv:1906.01371] - Submitted to EPJC

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} p_{\mathrm{T}}^{\gamma} \, \mathrm{d} \eta} = \frac{N_{\mathrm{ev}}}{\mathcal{L}_{\mathrm{int}} \, \varepsilon_{\mathrm{trig}} \, \mathcal{C}} \times \frac{\mathrm{d}^2 N_{\mathrm{n}}^{\mathrm{iso}}}{N_{\mathrm{ev}} \, \mathrm{d} p_{\mathrm{T}}^{\gamma} \, \mathrm{d} \eta} \times \frac{P}{\varepsilon_{\gamma}^{\mathrm{iso}}}$$

- ▶ Syst. unc. ranging **from 19% to 24%** → dominated by the isolation technique
- ► ALICE data compared to **pQCD at Next-to-Leading Order** (JETPHOX [PRD 73, 094007 (2006)] With CT14 PDF [PRD 93, 033006 (2016)] and BFG II FF [EPJC 2, 529-537 (1998)])
- ► Good agreement between our measurement and theory within stat. and syst. uncertainties

Results in pp collisions at $\sqrt{s}=7\,\text{TeV}$ – Comparison to other experiments

[arXiv:1906.01371] - Submitted to EPJC

- Consistent data-to-theory ratios among ALICE, ATLAS [PRD 83, 052005 (2011)] and CMS [PRL 106, 082001 (2011)]
- lacktriangle Extending the p_T^{γ} **reach down** compared to other LHC experiments ightarrow access to lower x_{T}
- ► Compatible with isolated photon data at different centre-of-mass energies in pp and pp collisions [NPB 860, 311-338 (2012)]

Results in p–Pb collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV

Specifications

- ▶ 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \rightarrow photons measured in 10–60 GeV/c
- ▶ Integrated luminosity $\rightarrow \mathcal{L}_{int} = 4.54 \pm 0.37 \, \text{nb}^{-1}$
- ightharpoonup Photons selected in $|\eta^{\gamma}| < 0.52$ and $\Delta \varphi^{\gamma} = 1.39$ rad (enlarged acceptance)

Results in p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$

Specifications

- ▶ 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \rightarrow photons measured in 10–60 GeV/c
- ▶ Integrated luminosity $\rightarrow \mathcal{L}_{int} = 4.54 \pm 0.37 \, \text{nb}^{-1}$
- lacktriangle Photons selected in $|\eta^\gamma| <$ 0.52 and $\Delta \varphi^\gamma = 1.39\,\mathrm{rad}$ (enlarged acceptance)

▲ Larger contribution from the **underlying event (UE)** in p−Pb than in pp collisions

► Underlying event → **all processes but the hardest** LO parton interaction

Underlying event estimation

ullet UE estimated and **subtracted before isolation**, event-by-event $ightarrow {m p}_{
m T}^{
m iso} -
ho_{
m UE} imes {m A}_{
m cone} < 2~{
m GeV}/{m c}$

▶ Charged UE measurement in **perpendicular cones** then "neutral + charged" extrapolation $\rightarrow \langle \rho_{\rm UE} \rangle \approx 1.7\,{\rm GeV}/c$ inside the isolation cone

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Purity and efficiency

Specifications

- \blacktriangleright 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \to photons measured in 10–60 GeV/c
- ► Integrated luminosity $\rightarrow \mathcal{L}_{int} = 4.54 \pm 0.37 \, \text{nb}^{-1}$
- lacktriangledown Photons selected in $|\eta^\gamma| <$ 0.52 and $\Delta arphi^\gamma =$ 1.39 rad (enlarged acceptance)

- ▶ Purity ranging **from 27% to 67%** → interplay between physics and detector effects
- ► Total efficiency ≥ 60% → correcting data from reconstruction, ID and isolation inefficiencies

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Cross section

$$\left(\frac{\mathsf{d}^2\sigma}{\mathsf{d}p_\mathsf{T}\,\mathsf{d}\eta}\right)_\mathsf{pp\text{-eq}} = \frac{1}{\langle \mathsf{T}_\mathsf{PA}\rangle} \times \left(\frac{\mathsf{d}^2\mathsf{N}_\mathsf{pp}^\mathsf{iso}}{\mathsf{N}_\mathsf{ev}\,\mathsf{d}p_\mathsf{T}\,\mathsf{d}\eta}\right)_\mathsf{p\text{-Pb}}$$

 $\begin{array}{ll} \quad \text{Binary nucleon collision scaling} \quad \rightarrow \quad \begin{array}{ll} \text{nuclear overlap} & \text{factor} \\ \langle \textit{T}_{\text{PA}} \rangle = 0.09923\,\text{mb}^{-1} \,_{\text{\tiny [ALICE-PUBLIC-2018-011]}} \end{array}$

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Cross section

$$\left(\frac{\mathsf{d}^2\sigma}{\mathsf{d} p_\mathsf{T}\,\mathsf{d} \eta}\right)_\mathsf{pp\text{-eq}} = \frac{1}{\langle \mathsf{T}_\mathsf{PA}\rangle} \times \left(\frac{\mathsf{d}^2\mathsf{N}_\mathsf{P}^\mathsf{iso}}{\mathsf{N}_\mathsf{ev}\,\mathsf{d} p_\mathsf{T}\,\mathsf{d} \eta}\right)_\mathsf{p\text{-Pb}}$$

- ▶ Binary nucleon collision scaling → nuclear overlap factor $\langle T_{pA} \rangle = 0.09923 \text{ mb}^{-1}$ [ALICE-PUBLIC-2018-011]
- ► JETPHOX pQCD calculations at Next-to-Leading Order ([PRD 73, 094007 (2006)])
 - ► EPPS16 [EPJC 77, 163 (2017)] and nCTEQ15np [PRD 93, 085037 (2016)] nPDFs + error sets for nPDF uncertainty
 - Scale uncertainty varying μ_R and μ_f by the 7-point method
- Good agreement between our measurement and theory within stat. and syst. uncertainties for the two nPDFs

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Cross section

$$\left(\frac{d^2\sigma}{d\rho_T\,d\eta}\right)_{\text{pp-eq}} = \frac{1}{\langle T_{\text{pA}}\rangle} \times \left(\frac{d^2N_{\gamma}^{\text{iso}}}{N_{\text{ev}}\,d\rho_T\,d\eta}\right)_{\text{p-Pb}}$$

- ▶ Binary nucleon collision scaling → nuclear overlap factor $\langle T_{pA} \rangle = 0.09923 \, \text{mb}^{-1}$ [ALICE-PUBLIC-2018-011]
- ► JETPHOX pQCD calculations at Next-to-Leading Order ([PRD 73, 094007 (2006)])
 - ► EPPS16 [EPJC 77, 163 (2017)] and nCTEQ15np [PRD 93, 085037 (2016)] nPDFs + error sets for nPDF uncertainty
 - Scale uncertainty varying μ_R and μ_f by the 7-point method
 - Good agreement between our measurement and theory within stat. and syst. uncertainties for the two nPDFs

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Cross section

$$\left(\frac{\mathsf{d}^2\sigma}{\mathsf{d}\mathsf{p}_\mathsf{T}\,\mathsf{d}\eta}\right)_\mathsf{pp\text{-eq}} = \frac{1}{\langle\mathsf{T}_\mathsf{pA}\rangle} \times \left(\frac{\mathsf{d}^2\mathsf{N}_\mathsf{pp}^\mathsf{rso}}{\mathsf{N}_\mathsf{ev}\,\mathsf{d}\mathsf{p}_\mathsf{T}\,\mathsf{d}\eta}\right)_\mathsf{p\text{-Pb}}$$

- ▶ Binary nucleon collision scaling → nuclear overlap factor $\langle T_{pA} \rangle = 0.09923 \, \text{mb}^{-1} \,_{\text{\tiny [ALICE-PUBLIC-2018-011]}}$
- ► JETPHOX pQCD calculations at Next-to-Leading Order ([PRD 73, 094007 (2006)])
 - ► EPPS16 [EPJC 77, 163 (2017)] and nCTEQ15np [PRD 93, 085037 (2016)] nPDFs + error sets for nPDF uncertainty
 - Scale uncertainty varying μ_R and μ_f by the 7-point method
- Good agreement between our measurement and theory within stat. and syst. uncertainties for the two nPDFs

Conclusions and outlook

Measuring photons in hadron collisions

- lacktriangle Photons **not affected** by the QCD medium ightarrow initial information on collision dynamics
- ▶ Test pQCD and obtain an energy reference for **parton energy loss** studies via correlations

Conclusions and outlook

Measuring photons in hadron collisions

- ► Photons **not affected** by the QCD medium → initial information on collision dynamics
- ► Test pQCD and obtain an energy reference for **parton energy loss** studies via correlations

Isolated photon measurements in ALICE

- ▶ Measurement in the p_T range 10–60 GeV/c in pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- ▶ Results compatible with pQCD calculations at NLO and in agreement with ATLAS and CMS
- ► ALICE extends the p_T reach to lower values compared to ATLAS and CMS \rightarrow valuable result for understanding the low- p_T direct photon region (thermal photons?)
- ► Further outlook $\rightarrow \gamma$ -jet and γ -hadron correlations

Conclusions and outlook

Measuring photons in hadron collisions

- ► Photons **not affected** by the QCD medium → initial information on collision dynamics
- ► Test pQCD and obtain an energy reference for **parton energy loss** studies via correlations

Isolated photon measurements in ALICE

- ▶ Measurement in the p_T range 10–60 GeV/c in pp at $\sqrt{s} = 7$ TeV and p-Pb at $\sqrt{s}_{NN} = 5.02$ TeV
- ▶ Results compatible with pQCD calculations at NLO and in agreement with ATLAS and CMS
- ► ALICE extends the p_T reach to lower values compared to ATLAS and CMS \rightarrow valuable result for understanding the low- p_T direct photon region (thermal photons?)
- ▶ Further outlook $\rightarrow \gamma$ -jet and γ -hadron correlations

Thank you for your attention!

Why study the $\gamma_{2\rightarrow 2}$ component?

- \[
 \gamma_{2→2} \]
 \[
 \text{produced early} \]
 in hard processes and not affected by the traversed medium
 \[
 \text{Calibrated energy reference for parton (q, g) energy loss studies (correlations)}
 \]
- Crucial to study their contribution to the total γ population to extract the **thermal component**

 \[
 \gamma_{2→2}
 \] well described by perturbative QCD calculations → measuring them helps to test and constrain theory

Purity correction (p-Pb)

- ho rises from lower to greater than unity ho raw purity $P_{\rm dd}$ is clearly **underestimated (overestimated) at low (high) photon** $p_{\rm T}$
- ► Corrected estimated purity **closer to "ideal purity"** → mandatory step

Results in pp collisions at $\sqrt{s}=\text{7\,TeV}$ – Efficiency

Specifications

- ▶ 2011 data sets, EMCal Level-0 trigger (5.5 GeV) \rightarrow photons measured in 10–60 GeV/c
- ▶ Integrated luminosity $\rightarrow \mathcal{L}_{int} = 473 \pm 28 \text{ (stat.)} \pm 17 \text{ (syst.)} \text{ nb}^{-1}$
- lacktriangle Photons selected in $|\eta^\gamma| <$ 0.27 and $\Delta arphi^\gamma =$ 0.9 rad

 \blacktriangleright Total efficiency \sim 60% \rightarrow correcting data from reconstruction, ID and isolation inefficiencies

Results in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02\,\text{TeV}$ – Efficiency

Specifications

- ▶ 2013 data sets, EMCal Level-1 γ triggers (7/11 GeV) \rightarrow photons measured in 10–60 GeV/c
- ► Integrated luminosity $\rightarrow \mathcal{L}_{int} = 4.54 \pm 0.37 \, \text{nb}^{-1}$
- lacktriangledown Photons selected in $|\eta^\gamma| <$ 0.52 and $\Delta arphi^\gamma =$ 1.39 rad (enlarged acceptance)

lacktriangle Total efficiency \gtrsim 60% ightarrow correcting data from reconstruction, ID and isolation inefficiencies