

S

G

S

3-7 June 2019

INFN - LNF, Frascati

The Pierre Auger Observatory

Province Mendoza Argentina

1665 surface detectors: water-Cherenkov tanks (grid of 1.5 km, 3000 km²)

The Pierre Auger Observatory

AERA: radio antenna array

Hybrid detection of air showers

Energy calibration

Energy calibration

What is the origin of the flux suppression?

• Propagation effect? "Greisen-Zatsepin-Kuzmin"

Maximum injection energy?

What is the origin of the ankle?

- Propagation effect? Proton $\longrightarrow \bigoplus_{i \in e^+}^{e^+} \bigoplus_{i \in e^+}$ Photo-pair production
- Transition effect?
- Interactions in the source environment?

S. Petrera - PHOTON 2019, Frascati

What is the origin of the flux suppression?

• Propagation effect? "Greisen-Zatsepin-Kuzmin"

• Interactions in the source environment?

Depth of shower maximum

Mass composition @ Earth (top of the atmosphere)

- Xmax distributions fitted with four-mass CONEX showers from LHC-tuned interaction models.
- Fit quality not always good (QGSJet worse).
- Large proton fractions below the ankle.
- Iron almost absent.

Anisotropy: Large scale

Combination of vertical and inclined showers

Harmonic analysis in right ascension α

E [EeV]	events	amplitude r	phase [deg.]	$P(\geq r)$
4-8	81701	$0.005\substack{+0.006\\-0.002}$	80 ± 60	0.60
> 8	32187	$0.047_{-0.007}^{+0.008}$	100 ± 10	2.6×10^{-8}

significant modulation at 5.2σ (5.6 σ before penalization for energy bins explored)

Auger Coll., Science (2017), APJ (2018)

Anisotropy: Large scale

3-d dipole above 8 EeV:

Combination of vertical and inclined showers

Harmonic analysis in right ascension α

E [EeV]	events	amplitude r	phase [deg.]	$P(\geq r)$
4-8	81701	$0.005\substack{+0.006\\-0.002}$	80 ± 60	0.60
> 8	32187	$0.047^{+0.008}_{-0.007}$	100 ± 10	$2.6 imes 10^{-8}$

significant modulation at 5.2σ (5.6 σ before penalization for energy bins explored)

Auger Coll., Science (2017), APJ (2018)

- Expected if cosmic rays diffuse to Galaxy from sources distributed similar to near-by galaxies (Harari, Mollerach PRD 2015, 2016)
- Deflection of dipolar pattern due to Galactic magnetic field
- Strong indication for extragalactic origin dipole direction ~ 125° from GC

Anisotropy: Intermediate scale

Search for flux excesses wrt iso. flux

Largest excess for $E > 58 \ EeV, \ \psi = 15 \circ: obs = 19, \ exp = 6$ Post-trial prob $\approx 10^{-3}$

Giaccari, ICRC 2017

Correlation with catalogs

- Active Galactic Nuclei (γ-AGN)
- Starbust Galaxies

Assuming CR flux \propto non thermal photon flux Best result for SBG

The photon-Auger connection

How photons influence Auger science?

- 1. The search for UHE photons
- 2. The role of photon background in CR propagation
- 3. The role of photon fields around the sources

... ...

1. The search for UHE photons

Why? Where do they come from?

Two traditional scenarios:

 Bottom-up: photons produced from protons propagating through photon bkgr: photo-pion production against CMB, EBL
 Proton → ● → ●

process occurring at sources and in the propagation from sources (cosmogenic photons)

• **Top-down:** photons from the decay of relic super-massive particles

several models mostly hypothesized for trans-GZK events (Z-bursts, Topological defects, SH Dark Matter, ...)

1. The search for UHE photons

Why? Where do they come from?

Two traditional scenarios:

 Bottom-up: photons produced from protons propagating through photon bkgr: photo-pion production against CMB, EBL
 Proton → ● → (

process occurring at sources and in the propagation from sources (cosmogenic photons)

• **Top-down:** photons from the decay of relic super-massive particles

several models mostly hypothesized for trans-GZK events (Z-bursts, Topological defects, SH Dark Matter, ...)

expected photons/CR

<1%

≈ few 10%

How to recognize a photon shower

Xmax from longitudinal profiles in **hybrid events** ($E \leq 10^{19} \text{ eV}$)

Muon content: photons produce at ground **smaller footprint** & **faster rise-time**

Search for diffuse photons:

- \circ \lesssim 10¹⁹ eV hybrid data set: MVA analysis using Xmax, Nstat, Sb
- \circ \gtrsim 10¹⁹ eV SD data set: LDF and rise-time

Diffuse photon limits

Diffuse photon limits

No UHE photon found **Current limits:** o rule out most of the top-down models. • Start to explore the region of predictions for cosmogenic photons.

Other photon searches

Blind search of point sources of EeV photons

Auger, APJ 2014

- Directional grouping of "photon-like" events
- Declination -85° < δ < +20°
- Lower energy range (17.3 < lgE < 18.5) (negl. diffuse flux)

(A color version of this figure is available in the online journal.)

Targeted search of point sources of EeV photons *Auger, APJL 2017*

- Grouping sources to reduce stat. penalization
- Search for excesses of EeV "photon-like" events

Other photon searches

(A color version of this figure is available in the online journal.)

2. The role of photon background in CR propagation

- The energy spectrum we measure is that of propagated particles/nuclei: $E_{det} < E_{ini}$
- The particles/nuclei are the ones surviving propagation: $M_{det} < M_{inj}$
- Photons and neutrinos are generated along the path \Rightarrow **MM**

Modeling photon fields and interaction cross sections in propagation codes

Fitting astrophysical properties of sources (distribution, injection spectrum and composition)

Astrophysical interpretation possible for simple scenarios:

- 1D propagation;
- Homogeneous distribution of identical sources of p, He, N (, Si) and Fe nuclei;
- CR injection = power-law + rigidity cutoff.

Same basic scenario used in many interpretation papers, e.g. Aharonian, Ahlers, Allard, Aloisio, Berezinsky, Blasi, Hooper, Olinto, Parizot, Taylor, ...:

Hard/very-hard injection unless nearby sources assumed

Auger combined fit of spectrum and composition data JCAP 04 (2017) 038 A comprensive study of model and data uncertainties

Model dependence:

- Propagation codes
- Cross-sections
- EBL models

Best fit results for reference model

SPG (SimProp, PSB x-sect, Gilmore '12 EBL) + EPOS-LHC

$$\frac{dN}{dE} = J_0 \sum_{\alpha} f_{\alpha} E_0^{-\gamma} \begin{cases} 1 & \text{for } E_0/Z_{\alpha} < R_{\text{cut}}, \\ \exp(1 - \frac{E_0}{Z_{\alpha}R_{\text{cut}}}) & \text{for } E_0/Z_{\alpha} \ge R_{\text{cut}} \end{cases}$$

reference model	best fit	average	shortest 68% int.
γ	1.22	1.27	$1.20 \div 1.38$
$\log_{10}(R_{\rm cut}/{\rm V})$	18.72	18.73	$18.69 \div 18.77$
$f_{ m H}(\%)$	6.4	15.1	$0.0 \div 18.9$
$f_{ m He}(\%)$	46.7	31.6	$18.9 \div 47.8$
$f_{ m N}(\%)$	37.5	42.1	$30.7 \div 51.7$
$f_{ m Si}(\%)$	9.4	11.2	$5.4 \div 14.6$
$\Delta X_{\rm max}/\sigma_{\rm syst}$	-0.63	-0.69	$-0.90 \div -0.48$
$\Delta E/\sigma_{\rm syst}$	+0.00	+0.12	$-0.57 \div +0.54$
D/n	166.5/117		
$D(J), D(X_{\max})$	12.9,153.5		

S. Petrera - PHOTON 2019, Frascati

Changing model parameters

	MC code	$\sigma_{\rm photodisint.}$	EBL model
SPG	SimProp	PSB	Gilmore 2012
STG	$\operatorname{SimProp}$	TALYS	Gilmore 2012
SPD	$\operatorname{SimProp}$	PSB	Domínguez 2011
CTG	$\operatorname{CRPropa}$	TALYS	Gilmore 2012
CTD	$\operatorname{CRPropa}$	TALYS	Domínguez 2011
CGD	$\operatorname{CRPropa}$	Geant4	Domínguez 2011

Best minimum for $\gamma < 1$: here the position depends strongly on model (EBL, ph-dis x-sections); Local minimum at $\gamma \approx 2$: almost independent of model parameters (CMB dominated)

Changing model parameters

	MC code	$\sigma_{\rm photodisint.}$	EBL model
SPG	SimProp	PSB	Gilmore 2012
STG	$\operatorname{SimProp}$	TALYS	Gilmore 2012
SPD	$\operatorname{SimProp}$	PSB	Domínguez 2011
CTG	$\operatorname{CRPropa}$	TALYS	Gilmore 2012
CTD	$\operatorname{CRPropa}$	TALYS	Domínguez 2011
CGD	CRPropa	Geant4	Domínguez 2011

Changing interaction model

EPOS-LHC gives the best agreement (initial tests with Sibyll 2.3 c ...)

model	γ	$\log_{10}(R_{\rm cut}/{ m V})$	D	D(J)	$D(X_{\max})$
EPOS-LHC	$+0.96\substack{+0.08\\-0.13}$	$18.68\substack{+0.02\\-0.04}$	174.3	13.2	161.1
Sibyll 2.1	$-1.50^{+0.05}$	$18.28\substack{+0.00\\-0.01}$	243.4	19.7	223.7
	$+2.08^{+0.02}_{-0.01}$	$19.89\substack{+0.01 \\ -0.02}$	316.5	10.5	306.0
QG5Jet II-04	$-1.50^{+0.02}_{*}$	$18.28\substack{+0.01\\-0.00}$	334.9	19.6	315.3

3. The role of photon fields around the sources

Interaction of nuclei in the source photon environment Unger, Farrar, Ancordoqui, PRD (2015) + ...

- Natural mechanism to produce the `ankle' in UHECR spectrum
- Interplay between interaction and escape mechanisms
- Photodisintegration within source environment

mixed-composition escaping the source

mankle & sub-ankle protons

Summary

- · Pierre Auger Observatory taking data since 20 years
- o Several results on spectrum, composition, anisotropy, ...
- Absence of photons (and neutrinos) support propagation scenarios
- Interpretation of data in term of source scenarios made difficult
 by large model uncertainties
- Current upgrade AugerPrime will provide better mass sensitivity in the suppression region

Backup material

Making the astrophysical model more realistic

4D propagation using CRPropa3

Large scale structure for CR sources (Dolag '12)

Results for a single model (CTG + EPOS-LHC): Wittkowski ICRC 2017

Source properties	4D with EGMF	4D no EGMF	1D no EGMF ¹
γ	1.61	0.61	0.87
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62
f _H	3 %	11 %	0 %
f _{He}	2 %	14 %	0 %
f _N	74 %	68 %	88 %
f _{Si}	21 %	7 %	12 %
f _{Fe}	0 %	0 %	0 %

¹Homogeneous source distribution, see [A. Aab et al., JCAP 2017, 038 (2017)]

Making the astrophysical model more realistic

4D propagation using CRPropa3

Large scale structure for CR sources (Dolag '12)

Results for a single model (CTG + EPOS-LHC): Wittkowski ICRC 2017

Source properties	4D with EGMF	4D no EGMF	1D no EGMF ¹
γ	1.61	0.61	0.87
$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62
f _H	3 %	11 %	0 %
f _{He}	2 %	14 %	0 %
f _N	74 %	68 %	88 %
f _{Si}	21 %	7 %	12 %
f _{Fe}	0 %	0 %	0 %

¹Homogeneous source distribution, see [A. Aab et al., JCAP 2017, 038 (2017)]

Anisotropy: Intermediate scale

- Compare the cumulative number of observed (n_{obs}) events with the expected on average from isotropic simulations (n_{exp})
- Compute the cumulative binomial probability (P) to measure n_{obs} given <n_{exp}>
- Scan in parameters: E_{th} in [40; 80] EeV in steps of 1 EeV Ψ in [1°; 30°] in steps of 0.25° up to 5°, 1° for

larger angles

Largest excess $E_{th} = 58 \text{ EeV}, \Psi = 15^{\circ}$ $n_{obs} = 19, n_{exp} = 6.0$ $P \sim 1.1 \times 10^{-5}$

Post-trial probability

~ 1.1 × 10⁻³

(fraction of isotropic simulations that have a smaller probability under the same scan)

Region of secondary minima above ~40 EeV

(Giaccari ICRC 2017)

Anisotropy: Correlation with catalogs

[Auger Coll., Ap.J. 853 (2018) L29]

Active Galactic Nuclei (γ -AGN)

- Selected from 2FHL Catalog (Fermi-LAT, 360 sources):
 Φ(> 50 GeV) ---> proxy for UHECR flux.
- Selection of the 17 objects within 250 Mpc.
- Majority blazars of BL-Lac type and radio-galaxies of FR-I type.

Starburst Galaxies

Use of Fermi-LAT search list for star-formation objects (Ackermann+ 2012)

- \circ 63 objects within 250 Mpc, only 4 detected in gamma rays: correlated $\Phi(> 1.4 \text{ GHz}) \rightarrow \text{proxy for UHECR flux}$
- Selection of brightest objects (flux completeness) with Φ (> 1.4 GHz) > 0.3 Jy
- 23 objects, size similar to the gamma-ray AGN sample

Assumption UHECRs flux proportional to non thermal photon flux

E > 60 EeV: f_{ani} = 7%, Ψ = 7° TS = 15.2 ⇒ After penalization ~2.7 σ

 $\begin{array}{l} \mbox{E} > 39 \mbox{ EeV: } f_{ani} = 10\%, \mbox{ } \Psi = 13^{\circ} \\ \mbox{TS} = 24.9 \implies \mbox{After penalization} \\ \mbox{ \sim4.0 σ} \end{array}$

Preshowers: a must to study UHE photons

Preshower (important for E_{\gamma} > 10^{19} \text{ eV}):

 \rightarrow contains typically 100 particles

(created at around 1000 km a.s.l.)

 \rightarrow dependence on E and B₁ (to be seen in data?)

Preshowers and EAS development

→ deep X_{max}, large fluctuations of X_{max}

PRESHOWER (primary E_y split into preshower particles):

→ shallow X_{max}, small fluctuations of X_{max}

Diffuse UHE photon search: mulitvariate

Pierre Auger Collaboration, JCAP 2017

X_{max} S_b N_{stat}

VEM: vertical equivalent muon

Targeted UHE photon search: source classes

Pierre Auger Collaboration, ApJL 2017

Groupping sources in classes

Class	No.	\mathcal{P}_w	\mathcal{P}
msec PSRs	67	0.57	0.14
γ -ray PSRs	75	0.97	0.98
LMXB	87	0.13	0.74
HMXB	48	0.33	0.84
H.E.S.S. PWN	17	0.92	0.90
H.E.S.S. other	16	0.12	0.52
H.E.S.S. UNID	20	0.79	0.45
Microquasars	13	0.29	0.48
Magnetars	16	0.30	0.89
Gal. Center	1	0.59	0.59
LMC	3	0.52	0.62
Cen A	1	0.31	0.31

Minimum p-values statistically insignificant

23

Upgrade of the Pierre Auger Observatory: AugerPrime

To increase exposure with composition sensitive data Surface array needed!

Duty cycle: 100% (SD) vs 15% (FD)

complementarity of light responses used to discriminate e.m. and muonic components

(AugerPrime design report 1604.03637)

Upgrade of the Pierre Auger Observatory: AugerPrime

To increase exposure with composition sensitive data Surface array needed!

Duty cycle: 100% (SD) vs 15% (FD)

complementarity of light responses used to discriminate e.m. and muonic components

Moreover

- Upgraded and faster electronics
- Extension of the dynamic range
- Cross check with underground buried AMIGA detectors
- Extension of the FD duty cycle

Status and plans for *AugerPrime*

- Composition measurement at 10²⁰ eV
- Composition selected anisotropy studies
- Particle physics with air showers

Deployment fast: ~ 5 -10 stations per day

2016: engineering array; 12 stations 2018-19: deployment 2019-25: data taking (40,000 km2 sr yr)

LDF of Ev.163076179300

PHYSICAL REVIEW D 92, 123001 (2015)

ORIGIN OF THE ANKLE IN THE ULTRAHIGH ENERGY ...

FIG. 13 (color online). Left: Comparison of photon spectra. BPL: Broken power law (solid), BB: black body spectrum (dashed), MBB: modified black body spectrum (dotted and dash-dotted). The curves are normalized to match the integral of the black body spectrum and the temperatures are chosen to match the peak energy of the broken power law. Right: Interaction times corresponding to the four photon spectra.