Unveiling the gamma-ray background through its anisotropies

Michela Negro **INFN** of Torino michela.negro@to.infn.it

Michela

Vela Project

OIA

Michela Negro

Michela

Michela Negro

OIA

Michela

The Large Area Telescope

The Calorimeter Optimized energy range: 0.1 - 300 GeV

AI EMI Shield

0 Neg D U M

Tracker

Module

Electronics

DAQ

The Tracker-converter

Pair production in tungsten foils Tracks detection in single-sided strip detectors

ACD Tile

Grid

Calorimeter

Module

Scintillator tile

2010 2010 Negro OI Michela

Diffuse Galactic emission

Inverse Compton process

Bremsstrahlung

Synchrotron

proton-proton interaction

photo-pion production

Galactic Sources

.....

Globular clusters Star-forming regions Binary systems

> Pulsars, pulsar wind nebulae

Novae, Supernova Remnants

Extragalactic Sources

Star forming galaxies (SFG)

Active galactic nuclei (AGN)

Negro OI Michela 0

The unresolved gamma-ray background

510 2010 Negro Michela I 0

Study the UGRB

to determine its exact composition

to constrain the faint end of the luminosity functions of components

to shed light on exotic physics (WIMP-like DM)

The UGRB intensity energy spectrum

PHOTON 201 Michela Negro

The UGRB intensity energy spectrum

Star forming galaxies (SFG)

Millisecond pulsars (MSP)

Anisotropic UGRB

Anisotropic UGRB: autocorrelation

Autocorrelation angular power spectrum

TOS ZO

Negro

Michela

Harmonic space

Multipoles

Autocorrelation angular power spectrum

Anisotropy of Isotropic point-like sources

Z S O T O Z O

egro

Z

Michela

Anisotropy energy spectrum Anisotropy of Isotropic point-like sources

7000

Ζ

Negro

Michela

PHOTON 2019 Michela Negro

$E_1 \times E_2 = C_P^{12} \le \sqrt{C_P^{11} C_P^{22}}$

201 201 Michel

Michela

Cross-correlation coefficient Matrix

OI

V

L

L

Physical interpretation (work in progress)

- constrain source populations models
- constrain WIMP-like DM parameters

Cross-correlation with other probes

Galaxy Clusters

Galaxy catalogs

510 Z

J

Negro

Michela

Cross-correlation with Galaxy catalogs

Χ

UGRB

Cross-correlation with Galaxy catalogs

Investigated surveys with **spectral** (E) and **tomographic** (z) approach:

[Cuoco et al. 2017]

- NVSS
- WISExSuperCOSMOS
- 2MPZ
- SDSS DR12
- SDSS DR6 QSO

Signal varies with redshift: UGRB produced by different types of sources

and the state

Cross-correlation with Galaxy catalogs

Beyond the **tomographic** approach for **2MPZ** catalog:

[Ammazzalorso et al. 2018]

- redshift slicing (3 bins)
- **B-band** luminosity slicing: traces the star formation activity
- **K-band** luminosity slicing: correlates with objects mass
- **High K low B** (high masses + low level of star formation): traces DM (WIMP)

201 Z Z D Miche

Cross-correlation with Galaxy clusters

Constrain the contribution of **Intra-cluster medium** and **DM**

e.g. [Branchini et al. 2017]

- WHL12 (158,103 clusters)
- redMaPPer (26,350 clusters)
- PlanckSZ (1,653 clusters)

 $>3\sigma$ signal!

Small scales: hard component + soft component

100 100 Z Z Michela

The

Coma clus

er of Galaxies

Cross-correlation with cosmic shear

Cosmic shear:

statistical measurement of the distortion of images due to the weak lensing

0

Ζ

0

7

Michela

Investigated surveys with **spectral** and **tomographic** approach (proposed by Camera et al. 2013/2015):

[Troster et al. 2017]

[Shirasaki et al. 2018]

RA [deg]

Cross-correlation with CMB lensing

Unlensed

102

Ζ

C

I

0

0

Ζ

Michela

Cross-correlation with CMB lensing

201

Z

6

D

NO

σ

Michel

Cross-correlation of Lensing potential of the CMB and γ -ray field to investigate the LSS

Cross-correlation with CMB

Signature of the Integrated Saches-Wolfe effect

Z S O T S O T

0

D

Ne

Π

Miche

Gravitational well of galaxy supercluster: the depth shrinks as the universe (and cluster) expands 33

[Xia et al. 2011]:

Searched for signature of ISW in cross-correlation between **WMAP7**-CMB and 21-mo γ-ray data

Summary and conclusions

Complementary to Intensity spectrum estimation to unveil the nature of the unresolved gamma-ray background

Autocorrelation

to constrain source populations models to constrain WIMP-like DM parameters

M.G. Aartsen et al.2014 prospects **Study the High** × 16 8 iffuse **Energy end of the** neutrino anisotropy Future spectrum × 21, 10 TS=2log(L/L0) IceCube Čerenkov telescopes (more with IceCube-Gen2*) (e.g. HAWC, CTA)

201

Z

Neg

Michela

Anisotropy of the UGRB

https://icecube.wisc.edu/news/view/605 *

Backup

35

Cross-correlation signals

~ Ζ Michela

The Angular Power Spectrum - APS

$[cm^{-2}s^{-1}sr^{-1}]$ -2e-07 2e-07 HEALPix maps (order 9, NSIDE=512)

J

Negro

Michela

PSF correction - The Window Functions

PSF correction - The Widow Functions

 $W^{beam}(E,\ell) = 2\pi \int_0^{\pi} P_{\ell}(\cos\theta) \mathrm{PSF}(\theta,E) \sin\theta d\theta$

 $\frac{\int_{E_{min}}^{E_{max}} W^{beam}(E,\ell) \frac{dN}{dE} dE}{\int_{E_{min}}^{E_{max}} \frac{dN}{dE} dE}$ $W_E^{beam}(\ell) =$

2010

ZO

PHO Michela

Negro

The White Noise Correction

Computed for each energy bin:

NO1 NO1

OI

0

Negro

Michela

Pixel area

The Standard APS estimator

slg

۲Pol C_N $W^2_{\ell,E}$

From the APS to the Cp

41

Fermi Source Catalogs

Fermi Source Catalogs

Two classes of sources

Star-for

FL8Y Extragalactic Sources

2901 Extragalactic sources

Two classes of sources

NO1 NO1 т

44

Past Measurements - Ackermann et al. 2012

Autocorrelation to constrain source populations models:

H O N Ζ Ζ Σ

D

Source count distribution (the simplest model: broken power law)

• The majority of anisotropy signal: blazars • blazars contributes to <20% of the UGRB intensity • the 80% being due to low-intrinsic-anisotropy component

3) UGRB species do not contribute to intensity and to anisotropy at the same extent!

Intensity and anisotropy energy spectra

... as complementary observables of the UGRB:

Cumulative contribution of blazar to the Intensity and to anisotropy as a function of source intensity

The anisotropy from unresolved sources is more strongly dependent on the sensitivity limit: improved point source sensitivity have a more notable impact on the measured IGRB anisotropy.

Z 0 Ne D 0 Miche

Past Measurements - Fornasa et al. 2016

Autocorrelation to constrain WIMP-like DM parameters:

I

5

Neg

Michela

Conservative exclusion limits on annihilating and decaying DM from the new APS measurement by Fornasa et al. 2016

07289v2 ::1608. arXiv 2017 al et Fornasa

Past Measurements - Fornasa et al. 2016

Autocorrelation to investigate the UGRB composition:

Blazars VS **Blazars+new-population**:

[Abdo et al. 2017]

LOZ ZO Z Michela

OIG

Michela Negro

1

