$\gamma-\gamma$ physics at KLOE-2

Dario Moricciani on behalf of KLOE-2 collaboration dario.moricciani@lnf.infn.it

INFN - Frascati Natianal Laboratory

International Conference on the Structure and the Interactions of the Photon. Satellite Workshop: Photon Physics and Simulation at Hadron Colliders

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE-2

$\gamma = \gamma$ physics at KLOE-2@DAΦNE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Radiative bhabha

Outline

KLOE-2@DAΦNE

- DA Φ NE: the ϕ factory
- KLOE-2

$\bigcirc \gamma - \gamma$ physics at KLOE-2@DA Φ NE

- HET Detector Idea
- Final leptons HET acceptance
- DAQ
- Physics signal simulation

🕘 Data Analysis

- Radiative bhabha events : $e^+e^-
 ightarrow e^+e^-\gamma$
- $\gamma\gamma \to \pi^\circ$ events search

5 Conclusions

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE-2

$\gamma = \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Radiative bhabha

The $\pi^{\circ} \rightarrow \gamma \gamma$ width

- The QCD Green's function $\langle VVA \rangle$ exhibits the axial anomaly of Adler, Bell and Jackiw (non-conservation of the axial vector current), which is responsible for the decay $\pi^0 \rightarrow \gamma\gamma$.
- The anomaly is a pure one-loop effect (triangle diagram).
- Link between the strong dynamics of infrared physics at low energies (pions) with the perturbative description in terms of quarks and gluons at high energies.
- Due to the recent theoretical advances, the decay width $\Gamma_{\pi^0 \to \gamma\gamma}$ is now predicted with a 1.4% accuracy:

$$\Gamma^{\text{theor}}_{\pi^0 \to \gamma\gamma} = 8.09 \pm 0.11 \text{ eV}. \tag{1}$$

• The major experimental information on this decay comes from the photo-production of pions on a nuclear target via the Primakoff effect.

Dario Moricciani (INFN - LNF)

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\begin{array}{l} {\rm DA} \Phi {\rm NE}; \mbox{ the } \phi \\ {\rm factory} \\ {\rm KLOE-2} \end{array}$

$\gamma = \gamma$ physics at KLOE-2@DAΦNE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data Analysis Radiative bhabha

PHOTON 2019 3 / 17

DA Φ NE: the ϕ factory

New interaction region:

- Large beam crossing angle : 2 × 12.5 mrad.
- Sextupoles for crabbed waist optics : 59% increase in terms of peak luminosity.

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $DA \Phi NE: the \phi$ factory

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance

Physics signal simulation

Data Analysi

Radiative bhabha

Dario Moricciani (INFN - LNF)

$\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 4 / 17

KLOE-2

KLOE-2 experiment ended on March 30th 2018:

- $\mathcal{L}_{\text{delivered}} = 6.8 \text{ fb}^{-1}$.
- $\mathcal{L}_{\text{acquired}} = 5.5 \text{ fb}^{-1}$.
- KLOE + KLOE-2 data sample: $\mathcal{L}_{int} = 8 \ fb^{-1} \rightarrow 2.4 \times 10^{10} \ \phi$ mesons produced, the largest sample ever collected at the $\phi(1020)$ peak in collider experiments.

The KLOE-2 data taking campaign started on November 2014

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

$\gamma - \gamma$ physics at KLOE-2@DA Φ NE

HET Detector Idea

Final leptons HET acceptance

Physics signal simulation

Data Analysis

> Radiative bhabha events :

Dario Moricciani (INFN - LNF)

$\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 5 / 17

HET Detector Idea

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE -2

$\gamma = \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Radiative bhabha events :

Dario Moricciani (INFN - LNF)

$\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 6 / 17

Final leptons HET acceptance

Simulation is based on ${\tt BDSIM}$ (arxiv 1808.10745) a GEANT4 toolkit

- HET tagged energy cover range between 430 MeV and 480 MeV for scattered leptons.
- Two photons cover the range from 60 up 160 MeV which overlap. with the π° at rest

- The energy resolution is of the order of 500 KeV/mm.
- Time resolution should be less than 2.7 ns (DAFØNE interbunch separation) in order to distinguish two consecutive bunch-cross.
- 28 plastic scintillator of 5 mm pitch should be the optimal solution.

Energy of leptons vs Distance from the nominal orbit

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory **KLOE-2**

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance

DAQ

Physics signal simulation

Data

Anaiysis

Radiative bhabha events :

Dario Moricciani (INFN - LNF)

 $\gamma - \gamma$ physics at KLOE-2

DAQ

- Usually DAΦNE is filled with 100+X bunches over 120.
- We use the "Fiducial", a signal provided by DAΦNE (in phase with respect to the first bunch circulating in DAΦNE) as TDC common start.
- The HET DAQ could stores information corresponding to $n = 1, \dots, 8$ turns of DA Φ NE when KLOE provides the trigger (T₁ and T₂).
- The two DAQ systems (HET and KLOE) are asynchronous.

$\gamma=\gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE-2

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance

DAQ

Physics signal simulation

Data

Analysis

tadiative bhabha vents : 8 / 17

HET and KLOE time synchronization

We can define

- IN events : the events in the overlapping (KLOE-HET) time window.
- OUT events : the events outside the overlapping (KLOE-HET) time window.

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory **KLOE-2**

$\gamma = \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance

DAQ

Physics signal simulation

Data

Radiative bhabha events :

Dario Moricciani (INFN - LNF)

 $\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 9 / 17

Physics signal simulation simulation: $\mathcal{L}_{int} = 5$ fb⁻¹

- Simulation of the signal is based on Ekhara V2.1: Comput.Phys.Commun. 182 (2011) 1338-1349 + BDSIM for final leptons tracking from IP to HET.
- HETs cross section for $e^+e^- \rightarrow e^+e^-\pi^\circ$: $\sigma_H \simeq 8$ pb, $\sigma_{HH} \simeq 2$ pb.
- Our physic goal #1: $\Gamma_{\pi^0 \to \gamma\gamma}$ at 1 % level (green point).
- Our physic goal #2: first measure of the $\mathcal{F}_{\pi} \mathbf{o}_{\gamma^* \gamma}(Q^2)$ at $Q^2_{\gamma^*} \leq 0.1 \text{ GeV}^2$ (red points).
- Our physic goal #3: have impact on $a_{\mu}^{\text{HLbL};\pi^0}$ (red numbers).

$\gamma(\mathbf{i}) \leq k_p$ + 5 permutations of the q_i q_{1k} q_{1p} q_{1p}			
$\mu(p)$.		$\cdot \mu(p)$	
Model	Data	$\chi^2/d.o.f.$	$a_{\mu}^{\text{LbyL};\pi} \times 10^{11}$
VMD	AO	6.6/19	(57.2 ± 4.0).N
VMD	A1	6.6/19	(57.7 ± 2.1).N
VMD	A2	7.5/27	(57.3 ± 1.1).av
$LMD+V, h_1 = 0$	A0	6.5/19	(72.3 ± 3.5) av
		,	$(79.8 \pm 4.2)_{MV}$
$LMD+V, h_1 = 0$	A1	6.6/19	(73.0 ± 1.7) JN
			$(80.5 \pm 2.0)_{MV}$
$LMD+V, h_1 = 0$	A2	7.5/27	(72.5 ± 0.8) JN
			(80.0 ± 0.8) _{MV}
$LMD+V, h_1 \neq 0$	A0	6.5/18	(72.4 ± 3.8) JN
LMD+V, $h_1 \neq 0$	A1	6.5/18	(72.9 ± 2.1) N
LMD+V, $h_1 \neq 0$	A2	7.5/26	(72.4 ± 1.5) JN
$LMD+V, h_1 \neq 0$	BO	18/35	(71.9 ± 3.4) _{JN} *
LMD+V, $h_1 \neq 0$	B1	18/35	(72.4 ± 1.6) _{JN} *
LMD+V, $h_1 \neq 0$	B2	19/43	(71.8 ± 0.7) JN *

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\begin{array}{l} {\rm DA} \Phi {\rm NE}; \ {\rm the} \ \phi \\ {\rm factory} \\ {\rm KLOE-2} \end{array}$

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data Analysi

adiative bhabha vents : 10 / 17

Dario Moricciani (INFN - LNF)

 $\gamma - \gamma$ physics at KLOE-2

PHOTON 2019

Radiative bhabha events: $e^+e^- \rightarrow e^+e^-\gamma$

- Using the luminosity measured by KLOE we can measure the radiative bhabha cross section at very forwand angle (seen by HETs).
- HETs acceptance is provided by the simulation which is based on BBBREM: Comp.Phys.Com. **81**, (1994), 372 + BDSIM for final leptons tracking from IP to HET.
- $\bullet \ \ \sigma_{e^+} \simeq 10.5 \ {\rm mb}, \ \sigma_{e^-} \simeq 7.1 \ {\rm mb}.$
- From the comparison of data and simulation we could measure $(A \times \varepsilon)_{HET}$

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE-2

$\gamma = \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

PHOTON 2019

Radiative bhabha events : 11 / 17

Radiative bhabha cross section asymmetry

Asimmetry on radiative bhabha cross section $\sigma_{e^+}\simeq$ 10.5 mb, $\sigma_{e^-}\simeq$ 7.1 mb.

- The DAΦNE electron and positron machines are not perfectly symmetric.
- Could be an effect of the IP z coordinate displacement w.r.t z=0?

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory **KLOE-2**

 $\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Analysis

Radiative bhabha events :

Dario Moricciani (INFN - LNF)

$\gamma - \gamma$ physics at KLOE-2

Data Quality

- Knowing (A × ε)_{HET} and radiative bhabha's cross section we can compare luminosity measured by HETs and KLOE.
- We have stable data (over years) for HETs plastics $11 \rightarrow 28$.
- The HET plastics 1 \rightarrow 10 are dominated by Touschek particles, which strongly depend on the DAF Φ NE running condition.
- Using this procedure we can select good runs.

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory KLOE-2

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Radiative bhabha

Dario Moricciani (INFN - LNF)

 $\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 13 / 17

$\gamma\gamma ightarrow \pi^\circ$ events search

- 500 pb⁻¹ of 2017 data are ricostructed.
- Double Arm
 - hits in both HET stations with $|\Delta T|$ within 4 DAF Φ NE bunches.
- Single Arm
 - hits in one HET station and at least one bunch in KLOE associated with only 2 neutral clusters in the EMC.
 - KLOE and HET bunch times compatible with Trigger signal.

 $\bullet~$ DA ΦNE turn is not considered, the control sample stored as well $\rightarrow~$ event by event

subtraction of accidentals.

• $|\Delta P_{x,y}|_{\gamma\gamma} < 50$ MeV.

$\gamma = \gamma$ physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory **KLOE-2**

$\gamma - \gamma$ physics at KLOE-2@DAΦNE

HET Detector Idea

Final leptons HET acceptance

DAQ

Physics signal simulation

Data Analysis

> adiative bhabha vents :

Dario Moricciani (INFN - LNF)

 $\gamma - \gamma$ physics at KLOE-2

PHOTON 2019 14 / 17

MVA

- We have to subtract IN and OUT events in the same time window.
- Multivariate analysis helpful to separate signal (Ekhara-like) from radiative Bhabha's events.

KLOE-2 Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE}$: the ϕ factory **KLOE-2**

$\gamma - \gamma$ physics at KLOE-2@DA Φ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data

Radiative bhabha events : 15 / 17

Control Sample

Some kinematical variables are used to validate the analysis procedure

Dario Moricciani

 $DA\Phi NE: the \phi$

Physics signal

Radiative bhabha

PHOTON 2019

16 / 17

Conclusions

- All triggers in 500 (330) pb⁻¹ with 2-clusters and HET selected channels (showing operational stability) have been studied.
- Statistical evidence of a tagged sample has been obtained on the electron side.
- More reconstructed data are needed to confirm the effect with the positron-side (futher data quality studies ongoing).
- The tagged sample consists of radiative Bhabha's with photons in KLOE and π° 's from $\gamma \gamma$ scattering
- MVA classifiers used to separates the two samples.

physics at KLOE-2

Dario Moricciani

Physics Motivation

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

$\gamma - \gamma$ physics at KLOE-2@DA ϕ NE

HET Detector Idea

Final leptons HET acceptance DAQ

Physics signal simulation

Data Analys

Radiative bhabha events : 17 / 17