Two-photon processes at Belle

Wenbiao Yan(USTC)

On behalf of Belle Collaboration

PHOTON 2019 - International Conference on the Structure and the Interactions of the Photon

3-7 June 2019

INFN - LNF, Frascati

Satellite Workshop: Photon Physics and Simulation at Hadron Colliders 6-7 June 2019

KEKB accelerator & Belle Detector

- Asymmetric e⁺e⁻ collider

 ✓ 8 GeV(e⁻); 3.5GeV(e⁺)
 ✓ Around 10.58GeV ↔ Y(4S)

 World-highest luminosity

 ✓ A to the terminal termin
 - $\checkmark L_{max} = 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Two-photon process

Reaction by virtual photon from e⁺ & e⁻ beam

✓ Photon virtuality $Q^2 = 4E_b E'_b \sin^2 \frac{\theta_e}{2}$

✓ Mass of hadronic system W

- Study of QCD calculation, Transition form factors (TFF), exotics search
- No-tag, single-tag and double-tag methods

double-tag method
e⁺ and e⁻ detected
no belle results

e⁺ & e⁻ not detected

e⁺ or e⁻ detected

Two-photon achievements at Belle

	GeV	cosθ* <	fb⁻¹	reference	year
γ J/ <i>ψ</i>	3.2 - 3.8		32.6	PLB540, 33	2002
π+π-	2.4 - 4.1	0.6	88	PLB15, 39	2005
	0945	0.6	86	PRD75, 051101	2007
	0.0 -1.5	0.0		JPhySocJpn76, 074102	2007
K⁺K-	1.4 - 2.4	0.6	67	EPJC32, 323	2003
	2.4 - 4.1	0.6	88	PLB15, 39	2005
ppbar	2.0 - 4.0	0.6	89	PLB621, 41	2005
4 mesons	2.75 - 3.75		395	EPJC53, 1	2006
KsKs	2.4 - 4.0	0.6	398	PLB651, 15	2007
	1.05 - 4.0	0.8	972	PTEP2013, 123C01	2013
π ^ο π ^ο	0.6 - 4.0	0.8	95	PRD78, 052004	2008
	0.6 - 4.1	0.8	223	PRD79, 052009	2009
<u>η</u> π ⁰	0.84 - 4.0	0.8	223	PRD80, 032001	2009
ηη	1.096 - 3.8	1.0	393	PRD82, 114031	2010
ωJ/ψ	3.9 - 4.2		694	PRL104, 092001	2010
φJ/w	4.2 - 5.0		825	PRL104, 112004	2010
ωω,ωφ,φφ	thr - 4.0		870	PRL108, 232001	2012
<u>η</u> 'π⁺π⁻	1.4 - 3.4		673	PRD86, 052002	2012
π ⁰	Q ² ∈[4,40]GeV ²		759	PRD86, 092007	2012
π ⁰ π ⁰	Q ² <30GeV ²		759	PRD93, 032003	2016
ppbarK⁺K ⁻	3.2 - 5.6		980	PRD93, 112017	2016

The $d\sigma/d|\cos\theta^*|$ for some processes are measured

Two-photon by real photon: no-tag

Collision by two-quasi-real photons
For W < 3GeV, e.g. γγ → K_cK_c

 $\begin{aligned} \frac{d\sigma}{4\pi d|\cos\theta^*|} (\gamma\gamma \to MM') &= |SY_0^0 + D_0Y_2^0 + G_0Y_4^0|^2 + |D_2Y_2^2 + G_2Y_4^2|^2 \\ &= \hat{S}^2|Y_0^0|^2 + \hat{D}_0^2|Y_2^0|^2 + \hat{D}_2^2|Y_2^2|^2 + \hat{G}_0^2|Y_4^0|^2 + \hat{G}_2^2|Y_4^2|^2 \end{aligned}$

- ✓ two-photon spin-helicity (J, λ) have (0, 0), (2, 0), (2, ±2)
- ✓ S, D_{λ} , G_{λ} for final hadronic systems
- \checkmark Y^m_I are spherical harmonics
- \checkmark Angular dependence of cross section is governed by Y^m_I
- ✓ Energy dependence of cross section by partial wave
- \checkmark Measure two-photon decay width $\Gamma_{\gamma\gamma}$ for studying nature of resonances

$f_2(1270)$ - $a_2(1320)$ interference @ $\gamma\gamma \rightarrow K\overline{K}$

Constructive interference

✓ f₂(1270)+a₂(1320) in K⁺K⁻

Destructive interference

✓ f₂(1270)-a₂(1320) in K_sK_s

Due to a phase relation in

isospin composition (PLB 59, 269)

A fit in W @ (1.15, 1.65)GeV
 Phase difference between
 f₂(1270) and a₂(1320)
 (172.6^{+6.0+12.2}_{-0.7-7.0})°

$f_0(1710)$ formation in $K_s K_s$

		$f_0(1710)$ fit			$f_2(1710)$ fit	
Parameter χ^2/ndf	fit-H 694.2/585	fit-L 701.6/585	H,L combined	PDG interference	fit-H 796.3/585	fit-L 831.5/585
$\frac{1}{\text{Mass}(f_J) \text{ (MeV/}c^2)}$	1750^{+5+29}_{-6-18}	1749^{+5+31}_{-6-42}	1750 ⁺⁶⁺²⁹ ₋₇₋₁₈	1720 ± 6	1750^{+6}_{-7}	1729^{+6}_{-7}
$\Gamma_{\rm tot}(f_J) ({\rm MeV})$	138^{+12+96}_{-11-50}	145^{+11+31}_{-10-54}	139^{+11+96}_{-12-50}	135 ± 6	132^{+12}_{-11}	150 ± 10
$I_{\gamma\gamma}\mathcal{D}(KK)_{f_J}(eV)$	12_2_8	21_4_26	12_{-2-8}	unknown	$2.1_{-0.3}$	1.6 ± 0.2

• $f_0(1710) \rightarrow K_s K_s$ is confirmed in two-photon process.

W-dependence of cross section

● Study in high-W region @ no-tag method ✓ Good place to test QCD PRD 24, 1808 NPB 329, 285

• $\sigma \propto W^{-n}$: W⁻⁶ for charged pair, W⁻¹⁰ for neutral and pp

$$\frac{d\sigma}{d|\cos\theta^*|} = 16\pi\alpha^2 \frac{|F_M(W^2)|^2}{W^2} \Big\{ \frac{(e_1 - e_2)^4}{\sin^4\theta^*} + \frac{2e_1e_2(e_1 - e_2)^2}{\sin^2\theta^*} g(\theta^*) + 2e_1^2e_2^2g^2(\theta^*) \Big\}$$

- \checkmark **F**_M: meson form factor
- ✓ $g(\theta^*)$: unknown, non-perturbative factor

	pQCD[2]	Belle	W(GeV)	cos∂* <
π+ π-	6	7.9±0.4±1.5	3.0-4.1	0.6
K+K-	6	7.3±0.3±1.5	3.0-4.1	0.6
KsKs	10	10.5±0.6±0.5	2.4-4.0	0.6
KsKs	10	11.0±0.4±0.4	2.6-4.0	0.8
$\pi^0\pi^0$	10	8.0±0.5±0.4	3.1-4.1	0.8
ppbar	10	12.4+2.4-2.3	3.2-4.0	0.6

 $\gamma\gamma \rightarrow K_s K_s$

Study of K_sK_s via fusion with low background level

• Close to n=10, agreement with pQCD

 $\gamma\gamma^* \rightarrow 2\pi^0$

Integrated cross section in Q² bins
f₀(980) & f₂(1270) are evident
Partial-wave amplitudes analysis
✓ For W < 1.5GeV, S & D wave

$$\begin{split} t_0 &= |SY_0^0 + D_0 Y_2^0|^2 + |D_2 Y_2^2|^2 + 2\epsilon_0 |D_1 Y_2^1|^2, \\ t_1 &= 2\epsilon_1 \Re ((D_2^* |Y_2^2| - S^* Y_0^0 - D_0^* Y_2^0) D_1 |Y_2^1|), \\ t_2 &= -2\epsilon_0 \Re (D_2^* |Y_2^2| (SY_0^0 + D_0 Y_2^0)), \end{split}$$

PRD 93, 032003

f₂(1270) **TFF**

The f₂(1270) TFF for helicity-0,1,2 are studied for the first time.
 ✓ Solid: NPB 523, 423; (dot-) dashed: Eqs in PRD85, 116001
 ✓ The predictions agrees well with f₂(1270) helicity-2 data
 ✓ Large helicity-0 and non-zero helicity-1 components seen
 ✓ The predictions is a factor of 1.5-2 larger than measured helicity-0/1 data.

f₀(980) **TFF**

The Q² dependence of f₀(980) TFF
The prediction NPB 523, 423 agrees well with data up to Q² = 10 GeV², but has steeper Q² dependence for Q² > 10GeV²

Search for exotic baryons in $\gamma\gamma \rightarrow p\overline{p}K^+K^-$

Group	Reaction	Mass (MeV)	Width (MeV)	σ 's ^a
LEPS	$\gamma C \to K^+ K^- X$	1540 ± 10	<25	4.6
DIANA	$K^+Xe \to K^0 pX$	1539 ± 2	<9	4.4
CLAS	$\gamma d \to K^+ K^- p(n)$	1542 ± 5	<21	5.2 ± 0.6^{b}
SAPHIR	$\gamma d \to K^+ K^0(n)$	1540 ± 6	<25	4.8
ITEP	$\nu A \to K^0 p X$	1533 ± 5	< 20	6.7
CLAS	$\gamma p \to \pi^+ K^+ K^-(n)$	1555 ± 10	<26	7.8
HERMES	$e^+d \to K^0 pX$	1526 ± 3	13 ± 9	~ 5
ZEUS	$e^+p \to e^+K^0pX$	1522 ± 3	8 ± 4	~ 5
COSY-TOF	$pp \to K^0 p \Sigma^+$	1530 ± 5	<18	4–6
SVD	$pA \to K^0 pX$	1526 ± 5	<24	5.6

Θ(1540) -> pK or nK

$P_c(4312) \rightarrow p J/\psi: uudc\bar{c}$

- Search for exotic baryons by p\$\$\phi\$ (uuds\$\overline{s}\$) and pK channels
- Search in Belle via $\gamma \gamma \rightarrow p \overline{p} K^+ K^-$

Search for exotic baryons in $\gamma \gamma \rightarrow p \overline{p} K^+ K^-$

• No evidence for $s\bar{s}$ partner of $P_c(4312)$

Summary and outlook

- Belle has performed many two-photon process
 - ✓ Most of analyses with no-tag method
 - ✓ Few analyses with single-tag method
- Playground to
 - ✓ Investigate particle nature by $\Gamma_{\gamma\gamma}$ × BR
 - ✓ Understand QCD
 - ✓ Transition form factors
 - ✓ Search for exotics hadron
- Improved are expected with Belle II data by integrated luminosity, higher W & Q².

See Prof. Boris Shwartz's talk at June 5