Prospects For Photon-Photon Measurements with CMS PPS

Justin Williams

On behalf of the CMS collaboration

Introduction •		
Introduction		

The LHC was built as a discovery machine, but we've found a way to do precision physics

- The CMS Precision Proton Spectrometer (PPS) provides an opportunity for new searches and measurements
- Possibility of a very strong background suppression using intact protons
- Outline
 - 1. Short description of PPS
 - 2. First physics results
 - 3. Prospects: Anomalous Couplings, Axion-Like Particles, etc.

PPS	
00000	

CMS Precision Proton Spectrometer

- LHC magnets bend scattered protons outside of the beam envelope
- Detect protons at about ± 200 m from IP5
- Near and far stations on both sides
- Reconstruct $\xi = 1 p_f/p_i$
- Central system mass acceptance 350 GeV < M_X < 2 TeV
- Collected ~ 10 fb⁻¹, 40 fb⁻¹, 58 fb⁻¹ in 2016, 2017, 2018 respectively

https://cds.cern.ch/record/1753795

PPS	
00000	

Layout of PPS

Analysis 00000000

Detectors - Year By Year

2016

TOTEM silicon strip detectors

Single track capability

2017

One station with silicon strips, one station with 3D pixels

- Pixel detectors with multi-tracking capability
- UFSD timing (one per side)

2018

All stations with 3D pixel detectors

- 3D pixel detectors
- Diamond timing detectors (one per side)

э

PPS	
000000	

PPS Alignment

Alignment Procedure

- RP moved very close to beam for alignment fill
- Use low luminosity, elastic runs for reference
- Correct physics run to reference runs
- Full documentation at CERN-TOTEM-NOTE-2017-001

PHOTON 2019

PPS	
000000	

Available Phase Space

Luminosity

	Analysis	
	0000000	

Dilepton Analysis

- First observation of the process at high mass using intact protons
- Observed 13 signal events (5.1σ) consistent with the SM expectation
- Performed at normal optics and pileup conditions
- Proof that the alignment, optics, trigger, proton tagging, etc are working

Analysis 0000000

Anomalous Quartic Guage Couplings

Photon induced processes with intact protons in forward regions

- Exclusive processes with a very clean signal
- > PPS provides the best sensitivity to anomalous couplings due to proton tagging

Justin Williams

PHOTON 2019

	Analysis	
	0000000	

Motivations for AQGC

- Warped Extra Dimensions solve hierarchy problem of the SM
- Predicted by Composite Higgs, Kaluza Klein, Extra Dimensional models
- Couplings can be probed independently of models
- Effective 4-photon couplings $\zeta_i \sim 10^{-14}$ $10^{-13}~{\rm GeV^{-4}}$ possible

	Analysis	
	0000000	

Backgrounds

- Requesting two protons identified in forward detectors + two converted photons in central detector
- All backgrounds considered (DPE diphoton production, H→ γγ, exclusive γγ production, dilepton + dijet misidentification, PU, Drell-Yan, ...)
- Pileup is the main source of background

JHEP 02, 165 (2015)

	Analysis ooooooo	

Pile Up In PPS

- The LHC collides packets of protons
- PU causes interference from particles generated at unrelated vertices
- For conditions of the LHC in 2016, can have up to 60 PU vertices

	Analysis	
	0000000	

Dealing with pileup

Justin Williams

PHOTON 2019

	Analysis oooooooo	

Potential For Limits

Cross section scales as a function of the coupling values ζ_1,ζ_2

$$\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2 s} \left(s^2 + t^2 + st\right)^2 \left[48 \left(\zeta_1\right)^2 + 40\zeta_1 \zeta_2 + 11 \left(\zeta_2\right)^2\right]$$

- Based on 9.41 fb⁻¹ of data from 2016
- Assume signal and background obey a Poisson distribution
- Assume expected background is 0 and observed events is 0

$$\sqrt{48\zeta_1^2 + 40\zeta_1\zeta_2 + 11\zeta_2^2} \ge 5.8 \times 10^{-13} \text{GeV}^{-4}$$

Justin Williams

PHOTON 2019

Analysis 0000000

Search For Axion-Like Particles

We can study the production of ALPs via photon exchange with intact protons

- Study the production of ALPs via photon exchange with intact protons
- Sensitivity is enhanced since ALP production rate increases with m_{γγ}
- PPS provides sensitivity that is competitive and complimentary to other collider searches above 600 GeV
- Existing limits on ALP production¹

¹JHEP 1806 (2018) 131

Justin Williams

PHOTON 2019

Summary

- With its 2016 operation, PPS has proven for the first time the feasibility of operating a near-beam proton spectrometer at a high luminosity hadron collider on a regular basis
- First observation of $\gamma\gamma \rightarrow \ell\ell$ with single proton tag
- Prospects for anomalous couplings, ALP searches, and more
- ▶ PPS has $> 110 \text{ fb}^{-1}$ and has plans for Run 3

Questions?

Justin Williams

PHOTON 2019

Standard Model $\gamma\gamma$ Exclusive Production

- QED process dominates at high m_{γγ}
- Cross section is well known
- W boson loop is the most significant at high $m_{\gamma\gamma}$

JHEP 02, 165 (2015)

Justin Williams

Dispersion Matrix

PF

Justin Williams