

Electroweak Precision Tests of the SM

Jens Erler

JGU & Helmholtz Institute Mainz (on leave from IF-UNAM)

PHOTON 2019 - International Conference on the Structure and the Interactions of the Photon 3-7 June 2019

Satellite Workshop: Photon Physics and Simulation at Hadron Colliders 6-7 June 2019

INFN - LNF, Frascati

Outline

- Weak mixing angle global survey of $sin^2\theta_W$ determinations
- Theoretical uncertainties correlations in precision observables
- Vacuum polarizations in global fits $\alpha(M_Z) \sin^2\theta_W(0) g_\mu 2 m_{c,b}$
- Fit results
- Conclusions and outlook

Weak mixing angle: global survey of sin²θ_W determinations

$$Z = \cos \theta_W W_3 - \sin \theta_W B$$
$$A = \sin \theta_W W_3 + \cos \theta_W B$$

$$\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2} = 1 - \frac{M_W^2}{M_Z^2}$$

Why pushing $sin^2\theta_W$?

- compute $\sin^2\theta_W$ from α , G_F and M_Z
- then measure $\sin^2\theta_W$ and M_W
- doubly over-constrained system at sub-‰ precision
- $\delta M_W \sim 15 \text{ MeV} \leftrightarrow \delta \sin^2 \theta_W \sim 0.00029 \text{ but <u>complementary</u>}$
- key test of EW symmetry breaking sector
- comparisons of different measurements, scales, and initial or final states provide window to physics beyond the SM
- ➡ global analysis

$sin^2\theta_W(0)$: approaches

- tuning in on the Z resonance
 - FB and LR asymmetries in e⁺e⁻ annihilation near s = M_Z^2
 - FB asymmetries in pp (p \overline{p}) Drell-Yan around m_{II} = M_Z

	v scattering	PVES	
leptonic	v _μ − e [_]	e- – e-	
DIS	heavy nuclei (NuTeV)	deuteron (PVDIS, SoLID)	
elastic	CEVNS (COHERENT)	proton, ¹² C (Qweak, P2)	
ΑΡΥ	heavy alkali atoms and ions	isotope ratios (Mainz)	

$sin^2\theta_W(0)$: approaches

- tuning in on the Z resonance
 - FB and LR asymmetries in e⁺e⁻ annihilation near s =
 - FB asymmetries in pp (pp) Drell-Yan around m

	v scattering	PV FISICA
leptonic	v _μ − e [_]	ee-
DIS	heavy nuclei (NuTeV)	deuteron (PVDIS, SoLID)
elastic	CEVNS (COHERENT)	proton, ¹² C (Qweak, P2)
ΑΡΥ	heavy alkali atoms and ions	isotope ratios (Mainz)

$sin^2\theta_W(0)$: approaches

Weak mixing angle: complementarity

- $M_W \leftrightarrow \sin^2 \theta_W \leftrightarrow G_F$: high precision tests of electroweak symmetry breaking (doubly over-constrained after Higgs discovery)
- Z pole \leftrightarrow low energy: new physics in loops (Z couplings) \leftrightarrow at tree level (e.g. Z' bosons or new operators)
- **high** ↔ **low energy:** running weak mixing angle
- ¹²C & APV (single) \leftrightarrow p & APV (ratios): low energy running, S \leftrightarrow T
- all: cross-check of systematic and theoretical uncertainty estimates (keeps everyone honest)

$M_H - m_t$

 $\frac{\text{indirect } m_t}{176.4 \pm 1.8 \text{ GeV}}$ (2.0 σ high)

indirect M_{H} : 90⁺¹⁷₋₁₅ GeV (1.9 σ low)

incl. theory error:

<u>indirect M_H</u>: 9|⁺¹⁸–16 GeV (1.8 σ low)

Weak mixing angle: complementarity

- $M_W \leftrightarrow \sin^2 \theta_W \leftrightarrow G_F$: high precision tests of electroweak symmetry breaking (doubly over-constrained after Higgs discovery)
- Z pole \leftrightarrow low energy: new physics in loops (Z couplings) \leftrightarrow at tree level (e.g. Z' bosons or new operators)
- **high** ↔ **low energy:** running weak mixing angle
- ¹²C & APV (single) \leftrightarrow p & APV (ratios): low energy running, S \leftrightarrow T
- all: cross-check of systematic and theoretical uncertainty estimates (keeps everyone honest)

Effective couplings

Weak mixing angle: complementarity

- $M_W \leftrightarrow \sin^2 \theta_W \leftrightarrow G_F$: high precision tests of electroweak symmetry breaking (doubly over-constrained after Higgs discovery)
- Z pole \leftrightarrow low energy: new physics in loops (Z couplings) \leftrightarrow at tree level (e.g. Z' bosons or new operators)
- **high** ↔ **low energy:** running weak mixing angle
- ¹²C & APV (single) \leftrightarrow p & APV (ratios): low energy running, S \leftrightarrow T
- all: cross-check of systematic and theoretical uncertainty estimates (keeps everyone honest)

$sin^2\theta_W(\mu)$

12

$sin^2\theta_W(\mu)$

12

Weak mixing angle: complementarity

- $M_W \leftrightarrow \sin^2 \theta_W \leftrightarrow G_F$: high precision tests of electroweak symmetry breaking (doubly over-constrained after Higgs discovery)
- Z pole \leftrightarrow low energy: new physics in loops (Z couplings) \leftrightarrow at tree level (e.g. Z' bosons or new operators)
- **high** ↔ **low energy:** running weak mixing angle
- ¹²C & APV (single) \leftrightarrow p & APV (ratios): low energy running, S \leftrightarrow T
- all: cross-check of systematic and theoretical uncertainty estimates (keeps everyone honest)

S and T

- $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models
- $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models Freitas & JE, PDG (2018)

Weak mixing angle: complementarity

- $M_W \leftrightarrow \sin^2 \theta_W \leftrightarrow G_F$: high precision tests of electroweak symmetry breaking (doubly over-constrained after Higgs discovery)
- Z pole \leftrightarrow low energy: new physics in loops (Z couplings) \leftrightarrow at tree level (e.g. Z' bosons or new operators)
- **high** ↔ **low energy:** running weak mixing angle
- ¹²C & APV (single) \leftrightarrow p & APV (ratios): low energy running, S \leftrightarrow T
- all: cross-check of systematic and theoretical uncertainty estimates (keeps everyone honest)

$sin^2\theta_W$ beyond the SM

- Z-Z' mixing: modification of Z vector coupling
- oblique parameters: STU (also need M_W and Γ_Z)
- new amplitudes: off- versus on-Z pole measurements (e.g. Z')
- dark Z: renormalization group evolution (running)

$sin^2\theta_W$ measurements

$sin^2\theta_W$ measurements

M_W measurements

Theoretical uncertainties: correlations in precision observables

Theory issues in PVES

- need full I-loop QED under experiment-specific conditions
- box diagrams (γZ-box)
- enhanced 2-loop electroweak (YWW-double box)
- running mixing angle (see later)
- unknown neutron distribution (neutron skin)

Theory issues for W & Z self-energies

- loop factors including enhancement factors such as $N_C = N_F = 3$ or $sin^{-2}\theta_W \approx m_t^2/M_W^2 \approx 4$ amount to
 - 0.020 (QED)
 - 0.116 (QCD)
 - 0.032 (CC)
 - 0.029 (NC)
- parametrized by
 - $\Delta S_Z = \pm 0.0034$ (may be combined with $\Delta \alpha_{had}$),
 - $\Delta T = \pm 0.0073$ (t-b doublet)
 - $\Delta U = S_W S_Z = \pm 0.005 I$
- assuming ΔS_Z , ΔT and ΔU to be sufficiently different (uncorrelated) induces theory correlations between different observables Schott & JE, PPNP 106 (2019)

Vacuum polarizations in global fits: α(Mz) sin²θw(0) g_µ-2 m_{b,c}

$\alpha(M_Z)$

- Dispersive approach: integral over $\sigma(e^+e^- \rightarrow hadrons)$ and τ -decay data
- $\alpha^{-1}(M_Z) = 128.947 \pm 0.012$ Davier et al., EPJC 77 (2017)
- $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089
- $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ Keshavarzi et al., PRD 97 (2018)
- $\alpha^{-1}(M_Z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, JHEP 03 (2018)
 - This value is converted from the MS scheme and uses both e⁺e⁻ annihilation and T decay spectral functions Davier et al., EPJC 77 (2017)
 - PQCD for $\sqrt{s} > 2$ GeV (using $\overline{m}_c \& \overline{m}_b$)
- (anti)correlation with $g_{\mu} 2$ at two (three) loop order and with $\sin^2\theta_W(0)$

g_µ — 2

PQCD:

Luo & JE, PRL 87 (2001)

 $(a_{\mu}^{hvp})^{c} = (14.6 \pm 0.5_{theory} \pm 0.2_{mc} \pm 0.1_{\alpha s}) \times 10^{-10} (a_{\mu}^{hvp})^{b} = 0.3 \times 10^{-10}$

Lattice gauge theory:

A. Gérardin et al., arXiv:1904.03120

$sin^2\theta_W(0)$ and $\Delta\alpha(M_Z)$

coupled system of differential equations Ramsey-Musolf & JE, PRD 72 (2005)

• $\Delta \alpha(M_Z)_{had}$ errors in $\sin^2 \theta_W(0) = \kappa(0) \sin^2 \theta_W(M_Z)$ add since $M_Z^2 \propto g_Z^2(M_Z) v^2 \propto [\alpha/s^2_W c^2_W](M_Z) G_F^{-1}$

$sin^2\theta_W(0)$: result

source	uncertainty in sin²θw (0)		
$\Delta \alpha^{(3)}$ (2 GeV)	1.2×10 ⁻⁵		
flavor separation	1.0×10-5		
isospin breaking	0.7×10-5		
singlet contribution	0.3×10 ⁻⁵		
PQCD	0.6×10 ⁻⁵		
Total	1.8×10 ⁻⁵		

 $\Rightarrow \sin^2 \theta_{VV}(0) = 0.23861 \pm 0.00005_{Z-pole} \pm 0.00002_{theory} \pm 0.00001_{\alpha_s}$ Ferro-Hernández & JE, JHEP 03 (2018); Freitas & JE, PDG (2018)

errors from m_c and m_b negligible, because...

$\overline{m}_{c}(\overline{m}_{c})$

- derived from another set of dispersion integrals
- input: electronic widths
 of J/ψ and ψ(2S)
- continuum contribution
 from self-consistency
 between sum rules

 m
_c(m
_c) = 1272 ± 8 + 2616 [α_s(M_Z) – 0.1182] MeV Masjuan, Spiesberger & JE, EPJC 77 (2017)

Fit Results

Performed with package GAPP (Global Analysis of Particle Properties)

Standard global fit

MH	125.14 ± 0.15 GeV	
Mz	91.1884 ± 0.0020 GeV	
$\overline{m}_{b}(\overline{m}_{b})$	4.180 ± 0.021 GeV	
$\Delta \alpha_{had}^{(3)}$ (2 GeV)	$(59.0 \pm 0.5) \times 10^{-4}$	

$\overline{m}_{t}(\overline{m}_{t})$	163.28 ± 0.44 GeV	1.00	-0.13	-0.28
m̄c(m̄c)	I.275 ± 0.009 GeV	-0.13	1.00	0.45
$\alpha_{s}(M_{z})$	0.1187 ± 0.0016	-0.28	0.45	1.00

other correlations small

Freitas & JE, PDG 2018

ρ_0 fit

- $\Delta \rho_0 = G_F \sum_i C_i / (8\sqrt{2\pi^2}) \Delta m_i^2$
 - where $\Delta m_i^2 \ge (m_1 m_2)^2$
 - despite appearance <u>there is</u> decoupling (see-saw type suppression of Δm_i²)
- $\rho_0 = 1.00039 \pm 0.00019 (2.0 \sigma)$
 - $(16 \text{ GeV})^2 \le \sum_i C_i / 3 \Delta m_i^2 \le (48 \text{ GeV})^2 @ 90\% \text{ CL}$
 - Y = 0 Higgs triplet VEVs v₃ strongly disfavored ($\rho_0 < I$)
 - consistent with |Y| = I Higgs triplets if $v_3 \sim 0.01 v_2$

Conclusions and outlook

- LHC & low-energy experiments approaching LEP precision in sin²θ_W
- new players:
 - coherent V-scattering
 - ultra-high precision PVES
 - APV isotope ratios
- at ultra-high precision not only theoretical uncertainties are relevant, but also their correlations (hard to estimate)
 - example: vacuum polarization uncertainties enter correlated in an increasing number of quantities

mc

- α(M_z) and sin²θ_w(0): can use PQCD for heavy quark contribution if masses are known.
- g-2: c quark contribution to muon g-2 similar to γ×γ; ± 70 MeV uncertainty in m_c induces an error of ± 1.6 × 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- Yukawa coupling mass relation (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger & JE, EPJC 77 (2017) (expect about twice the error for m_b)

m_t measurements

	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand average	172.74	0.11	0.31	0.33

JE, EPJC 75 (2015)

- $m_t = 172.74 \pm 0.25_{uncorr.} \pm 0.21_{corr.} \pm 0.32_{QCD} \text{ GeV} = 172.74 \pm 0.46 \text{ GeV}$
- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL 117 (2016); Andreassen & Schwartz, JHEP 10 (2017)
- 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_t = 176.4 \pm 1.8 \text{ GeV} (2 \text{ } \text{O})$ Freitas & JE (PDG 2018)

Features of our approach

- only experimental input: electronic widths of J/ ψ and ψ (2S)
- continuum contribution from self-consistency between sum rules
- include *M*₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

• m
_c(m
_c) = 1272 ± 8 + 2616 [α_s(M_Z) – 0.1182] MeV
Masjuan, Spiesberger & JE, EPJC 77 (2017)

$sin^2\theta_W(0)$: flavor separation

strange quark external current	ambiguous external current	
Φ	KΚ (non – Φ)	
K \overline{K} π [almost saturated by Φ(1680)]	ΚΚ̄2π, ΚΚ̄3π	
ηΦ	ΚΚη, ΚΚω	

- use of result for $\alpha(2 \text{ GeV})$ also needs isolation of strange contribution $\Delta_s \alpha$
- Ieft column assignment assumes OZI rule
- expect right column to originate mostly from strange current $(m_s > m_{u,d})$
- quantify expectation using averaged $\Delta_s(g_{\mu}-2)$ from lattices as Bayesian prior RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)
- $\Delta_{s}\alpha(1.8 \text{ GeV}) = (7.09 \pm 0.32) \times 10^{-4} \text{ (threshold mass } \overline{m}_{s} = 342 \text{ MeV} \approx \overline{m}_{s}^{\text{disc}}\text{)}$

$sin^2\theta_W(0)$: singlet separation

Ferro-Hernández & JE, JHEP 03 (2018) adapted from lattice g_µ-2 calculation RBC/UKQCD, PRL 116 (2016)

• use of result for $\alpha(2 \text{ GeV})$ needs singlet piece isolation $\Delta_{\text{disc}} \alpha(2 \text{ GeV})$

• then $\Delta_{\text{disc}} \overline{S^2} = (\overline{S^2} \pm 1/20) \Delta_{\text{disc}} \alpha(2 \text{ GeV}) = (-6 \pm 3) \times 10^{-6}$

• step function \Rightarrow singlet threshold mass $\overline{m}_s^{disc} \approx 350 \text{ MeV}$

S fit

- S parameter rules out QCD-like technicolor models
- S also constrains extra <u>degenerate</u> fermion families:
 - \rightarrow N_F = 2.75 ± 0.14 (assuming T = U = 0)
 - compare with $N_v = 2.991 \pm 0.007$ from Γ_Z

STU fit

$sin^2\theta_W(M_Z)$	0.23113 ± 0.00014	
$\alpha_{s}(M_{Z})$	0.1189 ± 0.0016	

S	0.02 ± 0.10	1.00	0.92	-0.66
Т	0.07 ± 0.12	0.92	I.00	-0.86
U	0.00 ± 0.09	-0.66	-0.86	I.00

- $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models
- $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)