Heavy quark Spectroscopy

Alessandro Pilloni

PHOTON 2019, June 3rd, 2019

Satellite Workshop: Photon Physics and Simulation at Hadron Colliders

INFN - Laboratori Nazionali di Frascati 3-7 June, 2019 Frascati (Rome), Italy Auditorium Bruno Touschek

23S(3695)

13S (3105

Potential models

Effective theories

١P

Multiscale system

 $m_0 \gg m_0 v \gg m_0 v^2$ Systematically integrate $m_b \sim 5 \text{ GeV}, m_c \sim 1.5 \text{ GeV}$ out the heavy scale, $v_h^2 \sim 0.1, v_c^2 \sim 0.3$ $m_0 \gg \Lambda_{OCD}$ Full QCD ---- NRQCD ----- pNRQCD 3.5 BELLE data: √s = 10.6 GeV 60 GeV < W < 240 GeV dσ/dp_T(pp→J/γ+X) × B(J/γ→μμ) [nb/GeV] ATLAS data: √s = 7 TeV 0.8 10 0.3 < z < 0.9CS+CO. NLO: Butenschön et al. |y| < 0.75 3 $Q^2 < 2.5 \text{ GeV}^2$ $d\sigma(ep \rightarrow J/\psi + X)/dp_T^2 \ [nb/GeV^2]$ 0.6 10 CDF data: √s = 1.96 TeV √s = 319 GeV 2.5 2 2 [dd] (X+/n/)(← 9+0)Ω 1 0.4 10 |y| < 0.60.2 $\lambda_{\theta}(p_T)$ 10⁻² ŦŦ Ŧ 10 0 Į -0.2 10-2 10⁻³ -0.4 1 10^{-3} $p\bar{p} \rightarrow J/\psi + X$, helicity frame H1 data: HERA1 10-4 -0.6 H1 data: HERA2 CDF data: $\sqrt{s} = 1.96$ TeV, |y| < 0.60.5 10 -0.8 CS+CO, NLO: Butenschön et al. S+CO, NLO: Butenschön et al. +CO, NLO: Butenschön et al 10^{-t} 0 10² 40 25 35 10 15 20 10 15 20 25 30 (b)¹ (**d**) **(a)** 10 (c) $p_T^2 [GeV^2]$ p_T [GeV] p_T [GeV]

Factorization (to be proved) of universal LDMEs

Good description of many production channels, some known puzzles (polarizations)

Exotic landscape

Esposito, AP, Polosa, Phys.Rept. 668

Charged *Z* states: $Z_c(3900), Z'_c(4020)$

Charged quarkonium-like resonances have been found, 4q needed

Two states $J^{PC} = 1^{+-}$ appear slightly above $D^{(*)}D^*$ thresholds

$$e^+e^- \rightarrow Z_c(3900)^+\pi^- \rightarrow J/\psi \ \pi^+\pi^- \text{ and } \rightarrow (DD^*)^+\pi^-$$

 $M = 3888.7 \pm 3.4 \text{ MeV}, \ \Gamma = 35 \pm 7 \text{ MeV}$
 $e^+e^- \rightarrow Z_c'(4020)^+\pi^- \rightarrow h_c \ \pi^+\pi^- \text{ and } \rightarrow \overline{D}^{*0}D^{*+}\pi^-$
 $M = 4023.9 \pm 2.4 \text{ MeV}, \ \Gamma = 10 \pm 6 \text{ MeV}$

A. Pilloni – Heavy quark Spectroscopy

Pentaquarks!

 $J^{P} = \left(\frac{3}{2}^{-}, \frac{5}{2}^{+}\right) \text{ or } \left(\frac{3}{2}^{+}, \frac{5}{2}^{-}\right) \text{ or } \left(\frac{5}{2}^{+}, \frac{3}{2}^{-}\right)$ Opposite parities needed for the interference to correctly describe angular distributions, low mass region contaminated by Λ^{*} (model dependence?)

Quantum numbers

No obvious threshold nearby

Pentaquarks!

LHCb, PRL 115, 072001 LHCb, PRL 117, 082003

Two states seen in $\Lambda_b \rightarrow (J/\psi p) K^-$, evidence in $\Lambda_b \rightarrow (J/\psi p) \pi^ M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$

Quantum numbers

$$I^{P} = \left(\frac{3}{2}^{-}, \frac{5}{2}^{+}\right) \text{ or } \left(\frac{3}{2}^{+}, \frac{5}{2}^{-}\right) \text{ or } \left(\frac{5}{2}^{+}, \frac{3}{2}^{-}\right)$$

Opposite parities needed for the interference to correctly describe angular distributions, low mass region contaminated by Λ^* (model dependence?)

No obvious threshold nearby

Life is not easy...

$a_1(1260)$ width

INSPIRE search

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT	
250 to 600	OUR ESTIMATE						
$367 \pm 9^{+28}_{-25}$	420k		ALEKSEEV	2010	COMP	190 $\pi^- \rightarrow \pi^- \pi^- \pi^+ P b'$	
 We do not use the following data for averages, fits, limits, etc. 							
$410 \pm 31 \pm 30$		1	AUBERT	2007AU	BABR	10.6 $e^+ e^- \rightarrow \rho^0 \rho^{\pm} \pi^{\mp} \gamma$	
520 - 680	6360	2	LINK	2007A	FOCS	$D^0 \to \pi^- \pi^+ \pi^- \pi^+$	
480 ± 20		3	GOMEZ-DUMM	2004	RVUE	$\tau^+ \to \pi^+ \pi^+ \pi^- \nu_{\tau}$	
580 ±41	90k		SALVINI	2004	OBLX	$\overline{p} p \rightarrow 2 \pi^+ 2 \pi^-$	
460 <u>+</u> 85	205	4	DRUTSKOY	2002	BELL	$B^{(*)} K^{-} K^{*0}$	
$814 \pm 36 \pm 13$	37k	5	ASNER	2000	CLE2	10.6 $e^+ e^- \rightarrow \tau^+ \tau^-$, $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$	

S-Matrix principles

+ Lorentz, discrete & global symmetries

These are constraints the amplitudes have to satisfy, but do not fix the dynamics

They can be imposed with an increasing amount of rigor, to extract robust physics information

The «background» phenomena can be effectively parameterized in a controlled way

A. Pilloni – Heavy quark Spectroscopy

- Resonances are identified as poles in the unphysical Riemann sheets.
- The analytic structure (lineshape) can also provide hints about their nature
- Analytic continuation is always model-dependent, and requires careful systematic checks

Amplitude analysis for $Z_c(3900)$

One can test different parametrizations of the amplitude, which correspond to different singularities \rightarrow different natures AP *et al.* (JPAC), PLB772, 200

Fit: III

Fit: III+tr.

Fit: IV+tr.

Fit: tr.

Pole extraction

Not conclusive at this stage

17

New pentaquarks discovered

LHCb, 1904.03947

The lowest $P_c(4312)$ appears as an isolated peak at the $\Sigma_c^+ \overline{D}{}^0$ threshold

A detailed study of the lineshape provides insight on its nature

Minimal(istic) model

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + b_0 + b_1 s \right]$$

$$F(s) = (N_1 + N_2 s) T_{11}(s)$$

Fernandez-Ramirez, AP et al. (JPAC), 1904.10021

Effective range expansion

We can set $c_{ii} = 0$ to reduce to the scattering length approximation

A. Pilloni – Heavy quark Spectroscopy

Minimal(istic) model

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + b_0 + b_1 s \right]$$

$$F(s) = (N_1 + N_2 s) T_{11}(s)$$

Fernandez-Ramirez, AP et al. (JPAC), 1904.10021

Effective range expansion

 $T(s) = \begin{pmatrix} m_{11} - c_{11}s - i\rho_1(s) & m_{12} \\ m_{12} & m_{22} - c_{22}s - i\rho_2(s) \end{pmatrix}^{-1}$

We can set $c_{ii} = 0$ to reduce to the scattering length approximation

A. Pilloni – Heavy quark Spectroscopy

Minimal(istic) model

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + b_0 + b_1 s \right]$$

$$F(s) = (N_1 + N_2 s) T_{11}(s)$$

Fernandez-Ramirez, AP et al. (JPAC), 1904.10021

Effective range expansion

 $T(s) = \begin{pmatrix} m_{11} - c_{11}s - i\rho_1(s) & m_{12} \\ m_{12} & m_{22} - c_{22}s - i\rho_2(s) \end{pmatrix}^{-1}$ to the

We can set $c_{ii} = 0$ to reduce to the scattering length approximation

A. Pilloni – Heavy quark Spectroscopy

P_c photoproduction

To exclude any rescattering mechanism, we propose to search the $P_c(4450)$ state in photoproduction.

Vector meson dominance relates the radiative width to the hadronic width

$$\langle \lambda_{\psi} \lambda_{p'} | T_r | \lambda_{\gamma} \lambda_p \rangle = \frac{ \langle \lambda_{\psi} \lambda_{p'} | T_{\text{dec}} | \lambda_R \rangle}{M_r^2 - W^2 - \mathrm{i}\Gamma_r M_r}$$

Hadronic part

- 3 independent helicity couplings,
 - \rightarrow approx. equal, $g_{\lambda_{\psi},\lambda_{p'}} \sim g$
- g extracted from total width and (unknown) branching ratio

$$\Gamma_{\gamma} = 4\pi\alpha\,\Gamma_{\psi p} \left(\frac{f_{\psi}}{M_{\psi}}\right)^2 \left(\frac{\bar{p}_i}{\bar{p}_f}\right)^{2\ell+1} \times \frac{4}{6}$$

Hiller Blin, AP et al. (JPAC), PRD94, 034002

Background parameterization

The background is described via an Effective Pomeron, whose parameters are fitted to high energy data from Hera

$$\begin{split} \lambda_{\psi}\lambda_{p'}|T_{P}|\lambda_{\gamma}\lambda_{p}\rangle &= \\ iA\left(\frac{s-s_{t}}{s_{0}}\right)^{\alpha(t)} e^{b_{0}(t-t_{\min})}\delta_{\lambda_{p}\lambda_{p'}}\delta_{\lambda_{\psi}\lambda_{\gamma}} \end{split}$$

Asymptotic + Effective threshold

Hiller Blin, AP et al. (JPAC), PRD94, 034002

A. Pilloni – Heavy quark Spectroscopy

Pentaquark photoproduction

 $J^P = (3/2)^-$

$\sigma_s \; ({ m MeV})$	0	60
A	$0.156\substack{+0.029\\-0.020}$	$0.157\substack{+0.039\\-0.021}$
$lpha_0$	$1.151\substack{+0.018\\-0.020}$	$1.150\substack{+0.018\\-0.026}$
$\alpha' \; ({\rm GeV}^{-2})$	$0.112\substack{+0.033\\-0.054}$	$0.111\substack{+0.037\\-0.064}$
$s_t \; ({\rm GeV}^2)$	$16.8^{+1.7}_{-0.9}$	$16.9^{+2.0}_{-1.6}$
$b_0 \; ({\rm GeV}^{-2})$	$1.01\substack{+0.47 \\ -0.29}$	$1.02\substack{+0.61\\-0.32}$
$\mathcal{B}_{\psi p}$ (95% CL)	$\leq 29~\%$	$\leq 30~\%$

Hiller Blin, AP et al. (JPAC), PRD94, 034002

A. Pilloni – Heavy quark Spectroscopy

Photoproduction at GlueX

No evidence of pentaquark signals has been seen in GlueX, upper limits have been set

Polarization observables

One can take advantage of the polarized beam at JLab High intensity beam in SBS (Hall A) looks promising Need polarized target (A_{LL}) or polarization of recoiling proton (K_{LL})

$$A(K)_{LL} = \frac{1}{2} \left[\frac{d\sigma(++) - d\sigma(+-)}{d\sigma(++) + d\sigma(+-)} - \frac{d\sigma(-+) - d\sigma(--)}{d\sigma(-+) + d\sigma(--)} \right]$$

Fanelli, Pentchev, Wojtsekhowski, Lol12-18-001 Winney, AP *et al.* (JPAC), to appear

Epilogue

Studying exotic hadrons is challenging

- They are related to dynamics of QCD building blocks
- They often appear as small fraction of cross sections, hard (but mandatory!) to find consistency between different channels
 - Dispersive methods can improve the consistency, and offer insights into their nature

Thank you!

BACKUP

Joint Physics Analysis Center

Vector Y states

Lots of unexpected $J^{PC} = 1^{--}$ states found in ISR/direct production (and nowhere else!) Seen in few final states, mostly $J/\psi \pi\pi$ and $\psi(2S) \pi\pi$

Not seen decaying into open charm pairs Large HQSS violation

X(3872)

- Discovered in $B \to K X \to K J/\psi \pi \pi$
- Quantum numbers 1⁺⁺
- Very close to DD* threshold
- Too narrow for an abovetreshold charmonium
- Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$
- Mass prediction not compatible with $\chi_{c1}(2P)$

$$\begin{split} M &= 3871.68 \pm 0.17 \; \text{MeV} \\ M_X - M_{DD^*} &= -3 \pm 192 \; \text{keV} \\ \Gamma &< 1.2 \; \text{MeV} @ 90\% \end{split}$$

X(3872)

Large prompt production at hadron colliders $\sigma_B / \sigma_{TOT} = (26.3 \pm 2.3 \pm 1.6)\%$

 $\sigma_{PR} \times B(X \rightarrow J/\psi \pi \pi)$ = (1.06 ± 0.11 ± 0.15) nb

CMS, JHEP 1304, 154

${\cal B}$ decay mode	X decay mode	product branchin	g fraction ($\times 10^5$)	B_{fit}	R_{fit}
K^+X	$X \to \pi \pi J/\psi$	$\boldsymbol{0.86 \pm 0.08}$	$(BABAR, 26 Belle^{25})$	$0.081\substack{+0.019\\-0.031}$	1
		$0.84 \pm 0.15 \pm 0.07$	$BABAR^{26}$		
		$0.86 \pm 0.08 \pm 0.05$	Belle^{25}		
$K^0 X$	$X \to \pi \pi J/\psi$	0.41 ± 0.11	$(BABAR, 26 Belle^{25})$		
		$0.35 \pm 0.19 \pm 0.04$	BABAR ²⁶		
		$0.43 \pm 0.12 \pm 0.04$	Belle ²⁵		
$(K^+\pi^-)_{NR}X$	$X \to \pi \pi J\!/\!\psi$	$0.81 \pm 0.20^{+0.11}_{-0.14}$	Bellc ¹⁰⁶		
$K^{*0}X$	$X \to \pi \pi J / \psi$	< 0.34, 90% C.L.	Belle^{106}		
KX	$X ightarrow \omega J/\psi$	$R=0.8\pm0.3$	BABAR ³³	$0.061^{+0.024}_{-0.036}$	$0.77^{+0.28}_{-0.32}$
K^+X		$0.6\pm0.2\pm0.1$	BABAR ³³	01000	0.01
$K^0 X$		$0.6\pm0.3\pm0.1$	BABAR ³³		
KX	$X \to \pi \pi \pi^0 J/\psi$	$R=1.0\pm0.4\pm0.3$	Belle ³²		
K^+X	$X \to D^{*0} \bar{D}^0$	8.5 ± 2.6	$(BABAR, \frac{38}{38} Belle^{37})$	$0.614^{+0.166}_{-0.074}$	$8.2^{+2.3}_{-2.8}$
		$16.7\pm3.6\pm4.7$	BABAR ³⁸		
		$7.7\pm1.6\pm1.0$	Belle ³⁷		
$K^0 X$	$X \to D^{*0} \bar{D}^0$	$f 12\pm4$	$(BABAR, \frac{38}{38} Belle^{37})$		
		$22\pm10\pm4$	BABAR ³⁸		
		$9.7\pm4.6\pm1.3$	Belle ³⁷		
K^+X	$X \to \gamma J/\psi$	0.202 ± 0.038	(BABAR, 35 Belle 34)	$0.019^{+0.005}_{-0.009}$	$0.24_{-0.06}^{+0.05}$
K^+X		$0.28 \pm 0.08 \pm 0.01$	BABAR ³⁵		
		$0.178^{+0.048}_{-0.044} \pm 0.012$	Bellc ³⁴		
$K^0 X$		$0.26 \pm 0.18 \pm 0.02$	BABAR ³⁵		
		$0.124^{+0.076}_{-0.061} \pm 0.011$	Belle^{34}		
K^+X	$X \to \gamma \psi(2S)$	0.44 ± 0.12	BABAR ³⁵	$0.04^{+0.015}_{-0.020}$	$0.51^{+0.13}_{-0.17}$
K^+X		$0.95 \pm 0.27 \pm 0.06$	BABAR ³⁵		
		$0.083^{+0.198}_{-0.183} \pm 0.044$	Belle^{34}		
		$R' = 2.46 \pm 0.64 \pm 0.29$	LHCb ³⁶		
$K^0 X$		$1.14 \pm 0.55 \pm 0.10$	BABAR ³⁵		
		$0.112^{+0.357}_{-0.290} \pm 0.057$	$\operatorname{Belle}^{34}$		
K^+X	$X \to \gamma \chi_{c1}$	$< 9.6 \times 10^{-3}$	Belle ²³	$< 1.0 \times 10^{-3}$	< 0.014
K^+X	$X \to \gamma \chi_{c2}$	< 0.016	Belle ²³	$< 1.7 \times 10^{-3}$	< 0.024
KX	$X \to \gamma \gamma$	$< 4.5 \times 10^{-3}$	Belle^{111}	$< 4.7 \times 10^{-4}$	$< 6.6 \times 10^{-3}$
KX	$X \to \eta J/\psi$	< 1.05	$BABAR^{112}$	< 0.11	< 1.55
K^+X	$X \to p\bar{p}$	$< 9.6 \times 10^{-4}$	LHCb ¹¹⁰	$< 1.6 \times 10^{-4}$	$< 2.2 \times 10^{-3}$

Vector *Y* states in BESIII

BESIII, PRL118, 092002 (2017)

BESIII, PRL118, 092001 (2017) $e^+e^- \rightarrow J/\psi \pi \pi$

Parameters	Solution I	Solution II	
$\Gamma_{e^+e^-} \mathcal{B}[\psi(3770) \to \pi^+\pi^- J/\psi]$		$0.5 \pm 0.1 \ (0$	
$\Gamma_{e^+e^-}\mathcal{B}(R_1 \to \pi^+\pi^- J/\psi)$	$8.8^{+1.5}_{-2.2} (\cdots)$	$6.8^{+1.1}_{-1.5} (\cdots)$	
$\Gamma_{e^+e^-} \mathcal{B}(R_2 \to \pi^+\pi^- J/\psi)$	$13.3 \pm 1.4 \ (12.0 \pm 1.0)$	$9.2\pm 0.7~(8.9\pm 0.6)$	
$\Gamma_{e^+e^-}\mathcal{B}(R_3 \to \pi^+\pi^- J/\psi)$	$21.1 \pm 3.9 \ (17.9 \pm 3.3)$	$1.7^{+0.8}_{-0.6} \ (1.1^{+0.5}_{-0.4})$	
ϕ_1	$-58 \pm 11 \; (-33 \pm 8)$	$-116^{+9}_{-10} \ (-81^{+7}_{-8})$	
ϕ_2	$-156 \pm 5 (-132 \pm 3)$	$68 \pm 24 \ (107 \pm 20)$	

New BESIII data show a peculiar lineshape for the Y(4260)

The state appear lighter and narrower, compatible with the ones in $h_c \pi \pi$ and $\chi_{c0} \omega$ A broader old-fashioned Y(4260) is appearing in $\overline{D}D^*\pi$, maybe indicating a $\overline{D}D_1$ dominance 1000

33

 $J/\psi \rightarrow \gamma \pi \pi \text{ (phase)}$

Even if an Adler zero is added, hard to obtain a reasonable behavior of the phase in the σ region We are exploring new parametrization

Data

COMPASS, PLB740, 303-311

A sharp drop appears at 2 GeV in *P*-wave intensity and phase

No convincing physical motivation for it

It affects the position of the $a'_2(1700)$

We decided to fit up to 2 GeV only
Systematic studies

Change of functional form and parameters in the denominator

$$\rho N_{ki}^{J}(s') = g \,\delta_{ki} \,\frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^2, m_{\pi}^2\right)}{\left(s'+s_R\right)^{2J+1+\alpha}}$$

- Default: $s_R = 1 \text{ GeV}^2$. We try $s_R = 0.8$, 1.8 GeV²
- Default: $\alpha = 2$. We try $\alpha = 1$
- We also try a different function: $\rho N_{ki}^J(s') = g \,\delta_{ki} \, \frac{Q_J(z_{s'})}{s'^{\alpha} \lambda^{1/2}(s', m_{n'}), m_{\pi})}$ with $\alpha = 2, 1.5, 1$
- Change of parameters in the numerator
 - Default: $t_{eff} = -0.1 \text{ GeV}^2$. We try $t_{eff} = -0.5 \text{ GeV}^2$
 - Default: 3rd order polynomial. We try 4th

$ho\pi$ channel and Deck amplitude

The hybrid π_1

A. Rodas, AP et al. (JPAC) PRL122, 042002

Hybrid hunting

Two hybrid states???

A. Pilloni – Heavy quark Spectroscopy

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).

π ₁ (1400) MASS π ₁ (1400) WIDTH		1354 ± 25 MeV (S = 1.8) 330 ± 35 MeV			
Decay Modes					
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level		
Γ_1	$\eta \pi^0$	seen			
Γ ₂	$\eta \pi^-$	seen			
Γ ₂	n' π				

Neither lattice nor models predict two 1^{-+} states in this region!

$\tau_1(1600)$	$I^G(J^{PC}) = 1^-(1^{-+})$				
π ₁ (1600) MASS		1662 ^{±8} ₋₉ MeV			
$\pi_1(1600)$ WIDTH		241 ± 40 MeV (S = 1.4)			
Decay M	odes				
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level		
Γ_1	πππ	seen			
Γ_2	$ ho^0 \pi^-$	seen			
Γ_3	$f_2(1270)\pi^-$	not seen			
Γ_4	$b_1(1235)\pi$	seen			
Γ ₅	$\eta'(958)\pi^-$	seen			
Γ_6	$f_1(1285)\pi$	seen			

Amplitudes for $\eta^{(\prime)}\pi$

We build the partial wave amplitudes according to the N/D method

 $p \xrightarrow{t_1} \eta \\ p \xrightarrow{t_1} \eta \\ \pi^- p \\ t$

$$\operatorname{Im} a(s) = \rho a(s) t^*(s)$$

$$\frac{d\sigma}{d\sqrt{s}} \propto \frac{p}{\sqrt{s}} |p^L q^{L-1} a(s)|^2$$

Amplitudes for $\eta^{(\prime)}\pi$

We build the partial wave amplitudes according to the N/D method

$$t(s) = \frac{N(s)}{D(s)}, a(s) = \frac{n(s)}{D(s)}$$

The D(s) has only right hand cuts; it contains all the Final State Interactions constrained by unitarity \rightarrow universal

$$\operatorname{Im} D(s) = -\rho N(s)$$

Scattering amplitude t(s)

Amplitudes for $\eta^{(\prime)}\pi$

We build the partial wave amplitudes according to the N/D method

$$t(s) = \frac{N(s)}{D(s)}, a(s) = \frac{n(s)}{D(s)}$$
The $n(s), N(s)$ have left hand cuts only, they depend on the exchanges \Rightarrow process-dependent, smooth
$$Production amplitude $a(s)$

$$\prod_{p} = \sum_{n} \prod_{p} \prod_{r=1}^{n} \prod_{n=1}^{n} \prod_{r=1}^{n} \prod_{r=1}^{n}$$$$

Coupled channel: the model

A. Rodas, AP et al. (JPAC) PRL122, 042002

Two channels, $i, k = \eta \pi, \eta' \pi$ Two waves, J = P, D 37 fit parameters

$$D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s'-s-i\epsilon)}$$

$$K_{ki}^{J}(s) = \sum_{R} \frac{g_{k}^{(R)}g_{i}^{(R)}}{m_{R}^{2} - s} + c_{ki}^{J} + d_{ki}^{J} s$$

$$\frac{1 \text{ K-matrix pole for the P-wave 2 K-matrix poles for the D-wave 2 K-matrix poles for the D-$$

$$\rho N_{ki}^{J}(s') = \delta_{ki} \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^{2}, m_{\pi}^{2}\right)}{\left(s' + s_{R}\right)^{2J+1+\alpha}} \qquad n_{k}^{J}(s) = \sum_{n=0}^{3} a_{n}^{J,k} T_{n}\left(\frac{s}{s+s_{0}}\right)$$
Left-hand scale (Blatt-Weisskopf radius) $s_{R} = s_{0} = 1 \text{ GeV}^{2}$

 $\alpha = 2$, 3rd order polynomial for $n_k^J(s)$

Fit to $\eta^{(\prime)}\pi$

Pole hunting

Pole hunting

Statistical Bootstrap

Correlations

Denominator parameters uncorrelated with the numerator ones \checkmark

Production (numerator) parameters

Denominator parameters uncorrelated between *P*- and *D*-wave ✓

K-matrix «bkg» parameters

Bootstrap

We can identify the poles in the region $m \in [1.2, 2]$ GeV, $\Gamma \in [0, 1]$ GeV

Two stable isolated poles are indentifiable in the *D*-wave Only one is stable in the *P*-wave

Systematic studies

For each class, the maximum deviation of mass and width is taken as a systematic error Deviation smaller than the statistical error are neglected Systematic of different classes are summed in quadrature

Bootstrap for $s_R = 1.8 \text{ GeV}^2$

Our skepticism about a second pole in the relevant region is confirmed: It is unstable and not trustable

Final results

Poles	Mass (MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_{2}^{\prime}(1700)$	$1722\pm15\pm67$	$247 \pm 17 \pm 63$
π_1	$1564\pm24\pm86$	$492\pm54\pm102$

Agreement with Lattice is restored

That's the most rigorous extraction of an exotic meson available so far!

The scalar glueball

A. Rodas, AP et al. (JPAC) in progress

Glueballs

The clearest sign of confinement in pure Yang-Mills The worst state to search in real life

ſ	J^{PC}	Mass MeV					
		Unquenched	Quenched				
		This work	M&P	Ky	Meyer		
ľ	0^{-+}		2590(40)(130)	2560(35)(120)	2250(60)(100)		
	2^{-+}	3460(320)	3100(30)(150)	3040(40)(150)	2780(50)(130)		
	0^{-+}	4490(590)	3640(60)(180)		3370(150)(150)		
	2^{-+}				3480(140)(160)		
	5^{-+}				3942(160)(180)		
ľ	$0^{}$ (exotic)	5166(1000)					
	1		3850(50)(190)	3830(40)(190)	3240(330)(150)		
	$2^{}$	4590(740)	3930(40)(190)	4010(45)(200)	3660(130)(170)		
	$2^{}$				3.740(200)(170)		
	3		4130(90)(200)	4200(45)(200)	4330(260)(200)		
	1+-	3270(340)	2940(30)(140)	2980(30)(140)	2670(65)(120)		
	3^{+-}	3850(350)	3550(40)(170)	3600(40)(170)	3270(90)(150)		
	3^{+-}				3630(140)(160)		
	2^{+-} (exotic)		4140(50)(200)	4230(50)(200)			
	0^{+-} (exotic)	5450(830)	4740(70)(230)	4780(60)(230)			
	5^{+-}				4110(170)(190)		
	0^{++}	1795(60)	1730(50)(80)	1710(50)(80)	1475(30)(65)		
	2^{++}	2620(50)	2400(25)(120)	2390(30)(120)	2150(30)(100)		
	0^{++}	3760(240)	2670(180)(130)		2755(30)(120)		
	3^{++}		3690(40)(180)	3670(50)(180)	3385(90)(150)		
	0^{++}				3370(100)(150)		
	0^{++}	Gragor	v ot al		3990(210)(180)		
	2^{++}	UIEgui	y et ui.		2880(100)(130)		
	4^{++}		10 170		3640(90)(160)		
	6^{++}		10, 170		4360(260)(200)		

 $J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K_S^0 K_S^0$

This is a gluon-rich process, expected to be one of the golden channels for the search of the scalar glueball

Same model as before

Two channels, $i, k = \pi \pi, KK$ Two waves, J = S, D 52 parameters

$$D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s'-s-i\epsilon)}$$

$$K_{ki}^{J}(s) = \sum_{R} \frac{g_{k}^{(R)} g_{i}^{(R)}}{m_{R}^{2} - s} + c_{ki}^{J} + d_{ki}^{J} s$$

3 *K*-matrix pole for the S-wave 3 *K*-matrix poles for the D-wave

$$\rho N_{ki}^{J}(s') = \delta_{ki} \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(J)}}^2, m_{\pi}^2\right)}{\left(s' + s_R\right)^{2J+1+\alpha}}$$

$$n_{k}^{J}(s) = \sum_{n=0}^{3} a_{n}^{J,k} T_{n}\left(\frac{s}{s+s_{0}}\right)$$

Fit results (preliminary)

Pole position (preliminary)

 $M(f_0(1500)) = 1460 \text{ MeV}$ $M(f_0(1710)) = 1800 \text{ MeV}$ $M(f_0(2020)) = 1970 \text{ MeV}$ $\Gamma(f_0(1500)) = 85 \text{ MeV}$ $\Gamma(f_0(1710)) = 190 \text{ MeV}$ $\Gamma(f_0(2020)) = 490 \text{ MeV}$

Amplitude analysis for $Z_c(3900)$

One can test different parametrizations of the amplitude, which correspond to different singularities \rightarrow different natures AP *et al.* (JPAC), PLB772, 200

Fit: III

Fit: III+tr.

Fit: IV+tr.

Fit: tr.

Pole extraction

Not conclusive at this stage

67

Extracting physics information means to hunt for poles in the complex plane

Pole position \rightarrow Mass and width Residues \rightarrow Couplings

68

Finite energy sum rules

X(3872)

- Discovered in $B \to K X \to K J/\psi \pi \pi$
- Quantum numbers 1⁺⁺
- Very close to DD* threshold
- Too narrow for an abovetreshold charmonium
- Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$
- Mass prediction not compatible with $\chi_{c1}(2P)$

$$\begin{split} M &= 3871.68 \pm 0.17 \; \text{MeV} \\ M_X - M_{DD^*} &= -3 \pm 192 \; \text{keV} \\ \Gamma &< 1.2 \; \text{MeV} @ 90\% \end{split}$$

X(3872)

Large prompt production at hadron colliders $\sigma_B / \sigma_{TOT} = (26.3 \pm 2.3 \pm 1.6)\%$

 $\sigma_{PR} \times B(X \rightarrow J/\psi \pi \pi)$ = (1.06 ± 0.11 ± 0.15) nb

CMS, JHEP 1304, 154

${\cal B}$ decay mode	X decay mode	product branchin	g fraction ($\times 10^5$)	B_{fit}	R_{fit}
K^+X	$X \to \pi \pi J\!/\!\psi$	0.86 ± 0.08	$(BABAR, \frac{26}{25} Belle^{25})$	$0.081\substack{+0.019\\-0.031}$	1
		$0.84 \pm 0.15 \pm 0.07$	BABAR ²⁶		
		$0.86 \pm 0.08 \pm 0.05$	Belle ²⁵		
$K^0 X$	$X \to \pi \pi J\!/\!\psi$	0.41 ± 0.11	$(BABAR, 26 Belle^{25})$		
		$0.35 \pm 0.19 \pm 0.04$	$BABAR^{26}$		
		$0.43 \pm 0.12 \pm 0.04$	Belle ²⁵		
$(K^+\pi^-)_{NR}X$	$X \to \pi \pi J\!/\!\psi$	$0.81 \pm 0.20^{+0.11}_{-0.14}$	$\operatorname{Bellc}^{106}$		
$K^{*0}X$	$X \to \pi \pi J / \psi$	< 0.34, 90% C.L.	Belle^{106}		
KX	$X ightarrow \omega J/\psi$	$R=0.8\pm0.3$	BABAR ³³	$0.061^{+0.024}_{-0.036}$	$0.77^{+0.28}_{-0.32}$
K^+X		$0.6\pm0.2\pm0.1$	BABAR ³³		
$K^0 X$		$0.6\pm0.3\pm0.1$	BABAR ³³		
KX	$X \to \pi \pi \pi^0 J/\psi$	$R=1.0\pm0.4\pm0.3$	Belle ³²		
K^+X	$X \to D^{*0} \bar{D}^0$	8.5 ± 2.6	$(BABAR, \frac{38}{38} Belle^{37})$	$0.614^{+0.166}_{-0.074}$	$8.2^{+2.3}_{-2.8}$
		$16.7\pm3.6\pm4.7$	BABAR ³⁸		
		$7.7\pm1.6\pm1.0$	Belle ³⁷		
$K^0 X$	$X \to D^{*0} \bar{D}^0$	$f 12\pm4$	$(BABAR, \frac{38}{38} Belle^{37})$		
		$22\pm10\pm4$	BABAR ³⁸		
		$9.7\pm4.6\pm1.3$	Belle ³⁷		
K^+X	$X \to \gamma J / \psi$	0.202 ± 0.038	$(BABAR, \frac{35}{35} Bellc \frac{34}{35})$	$0.019\substack{+0.005\\-0.009}$	$0.24^{+0.05}_{-0.06}$
K^+X		$0.28 \pm 0.08 \pm 0.01$	BABAR ³⁵		
		$0.178^{+0.048}_{-0.044} \pm 0.012$	$\operatorname{Bellc}^{34}$		
$K^0 X$		$0.26 \pm 0.18 \pm 0.02$	BABAR ³⁵		
		$0.124^{+0.076}_{-0.061}\pm0.011$	Belle^{34}		
K^+X	$X \to \gamma \psi(2S)$	0.44 ± 0.12	BABAR ³⁵	$0.04^{+0.015}_{-0.020}$	$0.51^{+0.13}_{-0.17}$
K^+X		$0.95 \pm 0.27 \pm 0.06$	BABAR ³⁵		
		$0.083^{+0.198}_{-0.183} \pm 0.044$	Belle^{34}		
		$R' = 2.46 \pm 0.64 \pm 0.29$	LHCb ³⁶		
$K^0 X$		$1.14 \pm 0.55 \pm 0.10$	BABAR ³⁵		
		$0.112^{+0.357}_{-0.290} \pm 0.057$	Belle^{34}		
K^+X	$X \to \gamma \chi_{c1}$	$< 9.6 \times 10^{-3}$	Belle ²³	$< 1.0 \times 10^{-3}$	< 0.014
K^+X	$X \to \gamma \chi_{c2}$	< 0.016	Belle ²³	$< 1.7 \times 10^{-3}$	< 0.024
KX	$X \to \gamma \gamma$	$< 4.5 \times 10^{-3}$	Belle^{111}	$< 4.7 \times 10^{-4}$	$< 6.6 \times 10^{-3}$
KX	$X \to \eta J/\psi$	< 1.05	BABAR ¹¹²	< 0.11	< 1.55
K^+X	$X \to p\bar{p}$	$< 9.6 \times 10^{-4}$	LHCb ¹¹⁰	$< 1.6 \times 10^{-4}$	$< 2.2 \times 10^{-3}$

Vector Y states

Lots of unexpected $J^{PC} = 1^{--}$ states found in ISR/direct production (and nowhere else!) Seen in few final states, mostly $J/\psi \pi\pi$ and $\psi(2S) \pi\pi$

Not seen decaying into open charm pairs Large HQSS violation

Charged *Z* states: $Z_c(3900), Z'_c(4020)$

Charged quarkonium-like resonances have been found, 4q needed

Two states $J^{PC} = 1^{+-}$ appear slightly above $D^{(*)}D^*$ thresholds

$$e^+e^- \to Z_c(3900)^+\pi^- \to J/\psi \ \pi^+\pi^- \text{ and } \to (DD^*)^+\pi^-$$

$$M = 3888.7 \pm 3.4 \text{ MeV}, \ \Gamma = 35 \pm 7 \text{ MeV}$$

$$e^+e^- \to Z_c'(4020)^+\pi^- \to h_c \ \pi^+\pi^- \text{ and } \to \overline{D}^{*0}D^{*+}\pi^-$$

$$M = 4023.9 \pm 2.4 \text{ MeV}, \ \Gamma = 10 \pm 6 \text{ MeV}$$

A. Pilloni – Heavy quark Spectroscopy

Charged *Z* states: $Z_b(10610), Z'_b(10650)$

