# DIPHOTON ELASTIC SCATTERING IN UPC AT SMALLER $W_{\gamma\gamma}$

#### ANTONI SZCZUREK & MARIOLA KŁUSEK-GAWENDA

#### INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCE

UPC UPC PHYSICS EPA  $\gamma\gamma \rightarrow \gamma\gamma$ NUCLEAR CROSS SECTION ATLAS CMS PREDICTIONS PREDICTIONS

**PHOTON2019** 



UPC ()

FRASCATI, 3-7 JUNE 2019 2 / 22

#### EPA

## EQUIVALENT PHOTON APPROXIMATION

The strong electromagnetic field is a source of photons that can induce electromagnetic reactions in ion-ion collisions.



# UPC PHYSICS EPA

**PHOTON2019** 

3 / 22

EPA

# EQUIVALENT PHOTON FLUX VS FORM FACTOR

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times \left| \int \mathrm{d}\chi \, \chi^2 \frac{F\left(\frac{\chi^2 + u^2}{b^2}\right)}{\chi^2 + u^2} J_1(\chi) \right|^2$$

Рнотом2019

$$\beta = \frac{p}{E}, \gamma = \frac{1}{\sqrt{1-\beta^2}}, u = \frac{\omega b}{\gamma \beta}, \chi = k_{\perp} b$$

► point-like 
$$F(\mathbf{q}^2) = 1$$
  

$$N(\omega, b) = \frac{z^2 \alpha_{opp}}{\pi^2 \beta^2} \frac{u^2}{\omega b^2} \left[ K_1^2(u) + \frac{1}{\gamma^2} K_0^2(u) \right]$$
► monopole  $F(\mathbf{q}^2) = \frac{\Lambda^2}{\Lambda^2 + |\mathbf{q}|^2}$   

$$\sqrt{\langle r^2 \rangle} = \sqrt{\frac{6}{\Lambda^2}} = 1 \text{ fm } A^{1/3}$$

realistic

$$\boldsymbol{F}\left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}| r) r dr$$



**Рнотом2019** 

UPC

UPC PHYSICS

EPA

 $\gamma\gamma \to \gamma\gamma$ 

NUCLEAR CROSS SECTION atlas cms





EPA

 $AA \rightarrow AA\gamma\gamma$ 

PHOTON2019 UPC UPC PHYSICS EPA  $\gamma\gamma \rightarrow \gamma\gamma$ 

NUCLEAR CROSS SECTION ATLAS CMS

PREDICTIONS PIONIC BACKGRO-UND

#### $\gamma\gamma \to \gamma\gamma$





**PHOTON2019** Pionic backgro-

UPC ()

#### Рнотом2019

#### FRASCATI, 3-7 JUNE 2019 7 / 22

# $\begin{array}{l} PBPB \longrightarrow PBPB\gamma\gamma \text{ - } FORM \text{ } FACTOR \\ \Rightarrow \text{ realistic} \end{array}$



|                                    |                                   | Boxes      |           | VDM-Regge  |                       |
|------------------------------------|-----------------------------------|------------|-----------|------------|-----------------------|
| cuts                               | $\sigma \text{ [nb]} \rightarrow$ | Frealistic | Fmonopole | Frealistic | F <sub>monopole</sub> |
| $W_{\gamma\gamma} > 5  \text{GeV}$ |                                   | 306        | 349       | 31         | 36                    |
| $W_{\gamma\gamma} > 5  \text{GeV}$ | , $p_{t,\gamma} > 2 \text{ GeV}$  | 159        | 182       | 7E-9       | 8E-9                  |
| $E_{\gamma} > 3  \text{GeV}$       |                                   | 16 692     | 18 400    | 17         | 18                    |
| $E_{\gamma} > 5  \text{GeV}$       |                                   | 4 800      | 5 450     | 9          | 611                   |
| $E_{\gamma} > 3 \text{ GeV},  $    | $ y_{\gamma}  < 2.5$              | 183        | 210       | 8E-2       | 9E-2                  |
| $E_{\gamma}$ > 5 GeV,              | $ y_{\gamma}  < 2.5$              | 54         | 61        | 4E-4       | 7E-4                  |

**PHOTON2019** NUCLEAR CROSS SECTION PIONIC 3ACKGRO-

PHOTON2019

UPC PHYSICS

## $AA{ ightarrow}AA\gamma\gamma$ - Atlas result

> ATLAS Collaboration (M. Aaboud et al.),

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. **13** (2017) 852

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector ATLAS Collaboration. CERN-EP-2019-051



## $AA{ ightarrow}AA\gamma\gamma$ - CMS result

▷→ CMS Collaboration (A. M. Sirunyan et al.), Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV, arXiv:1810.04602 [hep-ex]



14 events

 $CMS \Rightarrow \sigma = 120 \pm 46 (\text{stat.}) \pm 28 (\text{syst.}) \text{ nb}$   $\sigma = 138 \pm 14 \text{ nb} \iff \text{theory} \Rightarrow \sigma = 103 \pm 0.034 \text{ nb}$ point-like form factor &  $n(\omega)$  vs realistic form factor &  $N(\omega, b)$ 

UPC PHYSICS EPA  $\gamma\gamma \rightarrow \gamma\gamma$ NUCLEAR CROSS SECTION ATLAS CMS PREDICTIONS PREDICTIONS

PHOTON2019

CONCLUSION

CKGRO-

UPC ()

## HIGHER ORDER PROCESSES..?



**PHOTON2019** PIONIC BACKGRO-

$$M_{\gamma\gamma} < 5 \text{ GeV}$$
 ??

# AA $\rightarrow$ AA $\gamma\gamma$ for $M_{\gamma\gamma}$ < 5 GeV



PREDICTIONS PIONIC BACKGRO-

**PHOTON2019** 

#### PREDICTIONS

# $M_{\gamma\gamma} < 5 \text{ GeV} \Rightarrow \text{Pionic Background}$

- ▷ M. K-G & A. Sz.,  $\pi^+\pi^-$  and  $\pi^0\pi^0$  pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions, Phys. Rev. C87 (2013) 054908
  - $\Rightarrow W_{\gamma\gamma} \in (2m_{\pi} 6) \text{ GeV}$ ↔ total cross section & angular distributions
  - $\Rightarrow \gamma \gamma \rightarrow \pi^+ \pi^- \& \pi^0 \pi^0$





**PHOTON2019** 



### MESON EXCHANGE AT UPC



**PHOTON2019** PIONIC BACKGRO-

#### **RESONANSE CONTRIBUTION & EXPERIMENTAL RESOLUTION**



PIONIC BACKGRO-

**PHOTON2019** 

NUCLEAR CROSS SECTION

# $PBPB \rightarrow PBPB\gamma\gamma, \sqrt{s_{NN}} = 5.02 \text{ TeV}$

#### Total cross section [nb]

| Energy           | $W_{\gamma\gamma} = (0$ | - 2) GeV | $W_{\gamma\gamma}> 2~{ m GeV}$ |      |  |
|------------------|-------------------------|----------|--------------------------------|------|--|
| Region           | ALICE                   | LHCb     | ALICE                          | LHCb |  |
| boxes            | 4 890                   | 3 818    | 146                            | 79   |  |
| $\pi^0\pi^0$ bkg | 135 300                 | 40 866   | 46                             | 24   |  |
| $\eta$           | 722 573                 | 568 499  |                                |      |  |
| $\eta'(958)$     | 54 241                  | 40 482   |                                |      |  |
| $\eta_{c}(1S)$   |                         |          | 9                              | 5    |  |
| $\chi_{c0}(1P)$  |                         |          | 4                              | 2    |  |
| $\eta_c(2S)$     |                         |          | 2                              | 1    |  |

PHOTON2019 UPC

UPC PHYSICS

EPA

 $\gamma\gamma \to \gamma\gamma$ 

NUCLEAR CROSS SECTION ATLAS CMS

PREDICTIONS PIONIC BACKGRO-UND



#### EXPERIMENTAL RESOLUTION & $p_{t,\gamma\gamma}$



Very limited region where the signal overestimates the background

**PHOTON2019** 

Pionic backgro-

NUCLEAR CROSS SECTION

PREDICTIONS



#### Рнотом2019

FRASCATI, 3-7 JUNE 2019

$${}^{208}\text{PB}^{82+} + {}^{208}\text{PB}^{82+} \rightarrow {}^{208}\text{PB}^{82+} + {}^{208}\text{PB}^{82+} \gamma\gamma$$

midrapidity

forward rapidity





$${}^{40}\text{AR}^{18+} + {}^{40}\text{AR}^{18+} \rightarrow {}^{40}\text{AR}^{18+} + {}^{40}\text{AR}^{18+} \gamma\gamma$$

#### midrapidity



Run 5:  $L_{\text{int}}^{\text{Ar}-\text{Ar}} = (3 - 8.8) \text{ pb}^{-1}$ 

ALICE  $\rightarrow$   $\textit{W}_{\gamma\gamma}$  > 2 GeV  $\rightarrow$  1460 - 4280 events

UPC PHYSICS EPA  $\gamma\gamma \rightarrow \gamma\gamma$ Nuclear cross section atlas cms

**PHOTON2019** 

PREDICTIONS PIONIC BACKGRO-UND

## **CONCLUSION**

- UPCs of heavy ions open a possibility to measure or to test the  $\gamma\gamma \rightarrow \gamma\gamma$  scattering Different mechanisms:
  - - boxes
    - VDM-Regge
    - 2-gluon exchange
    - meson decays
    - pionic background
- Theory predicts measurable cross sections
- ► ATLAS/CMS have observed 13→59/14 events confirming Light-by-Light scattering in UPC
- ALICE and LHCb could measure LbyL scattering for  $W_{\gamma\gamma}$  > 2 GeV in Pb-Pb and Ar-Ar collisions with very good statistics
- $\blacktriangleright$  Importance of  $\eta \& \eta'$
- Next step → Missing contributions (?), interferences
  - -> Electromagnetic excitations ar Thank you

UPC PHYSICS

**PHOTON2019** 

## LBL IN UPC - THEORY

- ✓ D. d'Enterria and G. da Silveira, Observing light-by-light scattering at the Large Hadron Collider Phys. Rev. Lett. 111 (2013) 080405, Erratum: Phys. Rev. Lett. 116 (2016) 129901,
- M. K-G, P. Lebiedowicz and A. Szczurek, Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C93 (2016) 044907,
- ✓ M. K-G, W. Schäfer and A. Szczurek, *Two-gluon exchange* contribution to elastic γγ → γγ scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions, Phys. Lett. B761 (2016) 399,
- B.D. Moreira, C.A. Bertulani, V.P. Goncalves and F.S. Navarra, *Production of exotic charmonium in* γγ interactions at hadron colliders, Phys. Rev. D94 (2016) 094024,
- ✓ Z. Citron, M. K-G et al.,

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN-LPCC-2018-07, arXiv:1812.06772 [hep-ph]

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC,

 M. K-G, R. McNulty, R. Schicker and A. Szczurek, Light-by-light scattering in ultra-peripheral heavy-ion collisions at low diphoton masses, Phys. Rev. D99 (2019) 093013.

UPC ()

**PHOTON2019** 

CKGRO-

CONCLUSION

UPC PHYSICS