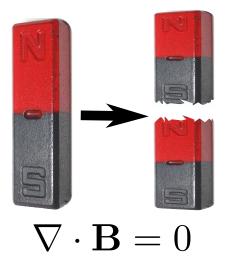

Introduction 00000000 Collisions of "small" particles 00000

Heavy-ion collisions


Conclusions

Magnetic monopoles from heavy-ion collisions

June 4, 2019 、ロト・アン・マート・マート マッペー

I thought there weren't any magnetic monopoles?

Peregrinus 1269

Maxwell 1865

But magnetic	monopoles could	exist	
0000000			
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions

All we need to do is add magnetic sources in Maxwell's equations,

$$\nabla \cdot \mathbf{E} = \rho_e, \qquad \nabla \cdot \mathbf{B} = \rho_m, -\nabla \times \mathbf{E} = \mathbf{j}_m + \frac{\partial \mathbf{B}}{\partial t}, \qquad \nabla \times \mathbf{B} = \mathbf{j}_e + \frac{\partial \mathbf{E}}{\partial t},$$

and for magnetic charges, with charge g, we get the dual Lorentz force law,

$$\mathbf{F}_e = e(\mathbf{E} + \mathbf{v} \times \mathbf{B}),$$
$$\mathbf{F}_m = g(\mathbf{B} - \mathbf{v} \times \mathbf{E}).$$

イロト 不得 トイヨト イヨト ヨー ろくで

Why magn	etic monopoles?		
Introduction 0000000	Collisions of "small" particles	Heavy-ion collisions	Conclusions 00

There are good reasons to think monopoles might exist

• They imply electric charge quantisation,

Dirac '31

 $\exists \text{ Monopoles } \Rightarrow q/e \in \mathbb{Z}.$

- Can be added to Standard Model with source term.
- Gravitational instantons for monopole pair production exist in Einstein-Maxwell theory.
 Garfinkle & Strominger '91
- Predicted by Grand Unified Theories 't Hooft '74, Polyakov '74

$$G \rightarrow SU(3) \times SU(2) \times U(1),$$

and by string theory.

Gross & Perry '83

Introduction 0000000	Collisions of "small" particles	Heavy-ion collisions	Conclusions 00
Types of mag	netic monopoles		

There are two kinds of possible magnetic monopoles:

Introduction 0000000	Collisions of "small" particles	Heavy-ion collisions	Conclusions 00
Types of mag	gnetic monopoles		

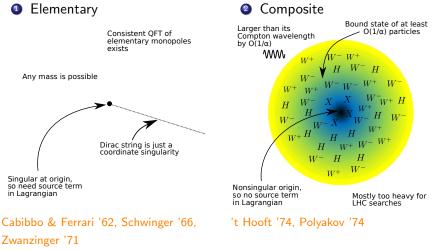
There are two kinds of possible magnetic monopoles:

Elementary

Consistent QFT of elementary monopoles exists

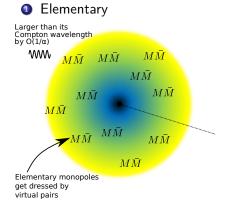
Any mass is possible

Singular at origin, so need source term in Lagrangian

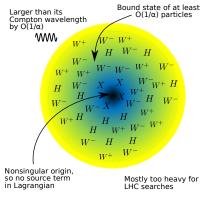

Cabibbo & Ferrari '62, Schwinger '66, Zwanzinger '71

Introduction 00000000 Collisions of "small" particles

Heavy-ion collisions


Types of magnetic monopoles

There are two kinds of possible magnetic monopoles:



There are two kinds of possible magnetic monopoles:

Göbel '70, Goldhaber '81

2 Composite

't Hooft '74, Polyakov '74

00000000	00000	00000000	00

Magnetic monopoles in the infrared

At large distances all monopoles look the same. One only sees the magnetic charge, g, the spin, s, and the mass, m, of the monopole,

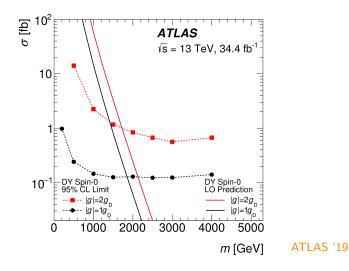
$$g = \frac{2\pi}{e}n, \qquad n \in \mathbb{Z},$$
$$s = \frac{1}{2}k, \qquad k \in \mathbb{Z},$$
$$m \in \mathbb{R}_+.$$

イロト 不得 トイヨト イヨト ヨー ろくで

- Sufficiently light magnetic monopoles would have been produced thermally during reheating (RH).
- From constraints on the flux in the universe today, it must be that $m/T_{RH}\gtrsim 45.$ Turner et al. '82
- As reheating must have happened before Big Bang Nucleosynthesis (BBN), it must be that $T_{RH} \gtrsim T_{BBN} \approx 10 \text{MeV}.$

 $m\gtrsim 0.45{\rm GeV}$

イロト 不得 トイヨト イヨト ヨー ろくで


How can we test whether or not magnetic monopoles exist?

- If composite magnetic monopoles exist, how can they be created?
- If elementary magnetic monopoles exist, how can they be created?

Introduction 00000000	Collisions of "small" particles •0000	Heavy-ion collisions	Conclusions 00
	t at the LHC, CERN 012-May-13 20:08:14.621490 GMT 08 / 564224000	1	
٤	Can we make m "small" particle	onopoles in collisions?	
			•
· .		<□▶ <舂▶ <≧▶	< 言 ▶ 言 かへで 10/25

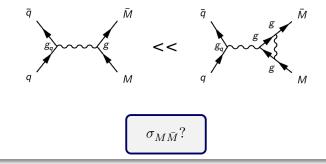
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions
	00000		

Experimental cross section bounds

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへの

 Introduction
 Collisions of "small" particles
 Heavy-ion collisions
 Conclusions

 Can we make elementary monopoles in "small" particle
 conclusions
 conclusions

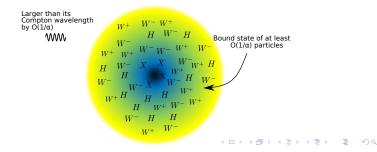

 collisions?
 collisions
 conclusions
 conclusions

Strong coupling

Dirac quantisation condition implies magnetic monopoles are strongly coupled,

$$\frac{g^2}{4\pi} = \frac{1}{\pi\alpha} \approx 34,$$

invalidating perturbation theory.

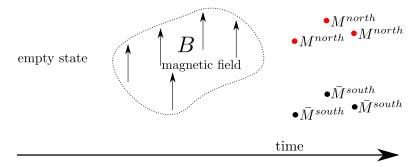


Because composite monopoles are coherent on large scales, their pair production in "small" particle collisions is expected to be exponentially suppressed,

$$\sigma_{M\bar{M}} \propto e^{-4/\alpha} \approx 10^{-238}$$

Witten '79, Drukier & Nussinov '82

Because composite monopoles are coherent on large scales, their pair production in "small" particle collisions is expected to be exponentially suppressed,

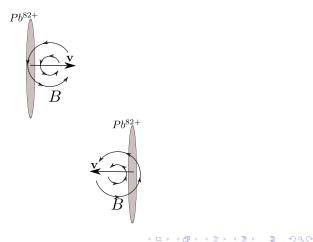

$$\sigma_{M\bar{M}} \propto e^{-4/\alpha} \approx 10^{-238}$$

Witten '79, Drukier & Nussinov '82

 $\label{eq:composite} \begin{array}{l} \mbox{Composite monopoles will never be produced in} \\ pp \mbox{ collisions.} \end{array}$

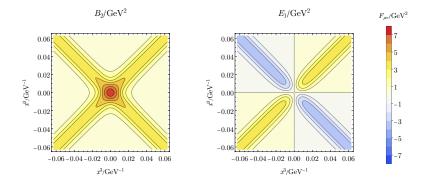
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions
00000000		0●0000000	00
The calcu	lation set-up		

How do we calculate the production cross section?


• For slowly varying and not too strong magnetic fields, the cross section is dominated by the "quenched" Feynman diagrams,

• This is true even for $g\gg 1,$ and allows for a controlled semiclassical expansion for $\sigma_{M\bar{M}}.$

Affleck & Manton '82


Conditions in	howarian	collicions		
Introduction 00000000	Collisions of "small" 00000	particles	Heavy-ion collisions	Conclusions 00

Strong magnetic fields are produced in peripheral heavy-ion collisions by Ampère's Law.

Electroma	gnetic fields		
Introduction 00000000	Collisions of "small" particles	Heavy-ion collisions	Conclusions 00

Magnetic fields produced in peripheral heavy-ion collisions are the strongest known in the universe, $\sim 7.5 GeV^2$ at LHC energies.

Creating			
0000000	00000	00000000	00
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions

Spacetime dependence

The importance of the spacetime dependence for monopole pair production is determined by,

$$\frac{L_{\rm pair production}}{L_{\rm field variation}} = \frac{m\omega}{gB} \approx \frac{m}{3n {\rm GeV}},$$

where B is the magnetic field strength, ω is the inverse decay time of the field and $n = g/g_D \in \mathbb{Z}$ gives the magnetic charge.

C	de la construcción de la		
0000000	00000	00000000	00
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions

Spacetime dependence

The importance of the spacetime dependence for monopole pair production is determined by,

$$\frac{L_{\rm pair production}}{L_{\rm field variation}} = \frac{m\omega}{gB} \approx \frac{m}{3n {\rm GeV}},$$

where B is the magnetic field strength, ω is the inverse decay time of the field and $n = g/g_D \in \mathbb{Z}$ gives the magnetic charge.

- For monopoles with $m\ll 3n{\rm GeV},$ the electromagnetic fields are effectively constant.
- For monopoles with $m \gg 3n \text{GeV}$, the electromagnetic fields are strongly varying.

0000000	00000	00000000	00
Cross section			

• For light monopoles, $m \lesssim 3n {\rm GeV},$ the cross section can be calculated in a locally constant field approximation,

$$\sigma_{\text{constant}} \sim \frac{(2s+1)(nZ\gamma)^{9/2}}{10^3 m^5 R^3 \gamma^2} e^{-\frac{4m^2 R^2}{\gamma v nZ} + \frac{\pi^2 n^2}{e^2}}.$$

Affleck & Manton '82, Gould & Rajantie '17

• For heavy monopoles, $m \gtrsim 3n {\rm GeV}$, the time dependence enhances the rate, but approximations break down.

$$\sigma_{\text{varying}} > \sigma_{\text{constant}}?$$

Gould, Ho & Rajantie '19

イロト 不得 トイヨト イヨト ヨー ろくで

Collisions of "small" particles

Heavy-ion collisions

Collider searches - heavy ions

M. Tanabash	i <i>et al.</i> (Partici	e Data Group)	, Phys. Rev. D	98, 030001 (201	18)	and 2019 update		
Monopole	e Product	ion Cross	Section -	Accelerato	or :	Searches	(N	SPIRE search
X-SECT (cm ²)	MASS (GeV)	CHG (g)	ENERGY (GeV)	BEAM		DOCUMENT ID		TECN
					1	ACHARYA	2018A	INDU
<2.5E-37	200 - 6000	1	13000	PP	2	ACHARYA	2017	INDU
<2E-37	200 - 6000	2	13000	pp	2	ACHARYA	2017	INDU
<4E-37	200 - 5000	3	13000	PP	2	ACHARYA	2017	INDU
<1.5E-36	400 - 4000	4	13000	pp	2	ACHARYA	2017	INDU
<7E-36	1000 - 3000	5	13000	PP	2	ACHARYA	2017	INDU
<5E-40	200 - 2500	0.5 - 2.0	8000	PP	3	AAD	2016AB	ATLS
<2E-37	100 - 3500	1	8000	pp	4	ACHARYA	2016	INDU
<2E-37	100 - 3500	2	8000	PP	4	ACHARYA	2016	INDU
<6E-37	500 - 3000	3	8000	PP	- 4	ACHARYA	2016	INDU
<7E-36	1000 - 2000	4	8000	pp	- 4	ACHARYA	2016	INDU
<1.6E-38	200 - 1200	1	7000	pp	5	AAD	2012CS	ATLS
<5E-38	45 - 102	1	206	e+ e-	6	ABBIENDI	2008	OPAL
<0.2E-36	200 - 700	1	1960	pp	7	ABULENCIA	2006K	CNTR
< 2.E-36		1	300	e^+p	8, 9	AKTAS	2005A	INDU
< 0.2 E-36		2	300	e* p	8, 9	AKTAS	2005A	INDU
< 0.09E-36		3	300	e ⁺ p	8, 9	AKTAS	2005A	INDU
< 0.05E-36		2.6	300	e ⁺ p	8, 9	AKTAS	2005A	INDU
< 2.E-36		1	300	e [†] p 8	I, 10	AKTAS	2005A	INDU
< 0.2E-36		2	300	e'p 8	I, 10	AKTAS	2005A	INDU
< 0.07E-36		3	300	e ⁺ p 8	l, 10	AKTAS	2005A	INDU
< 0.06E-36		2.6	300	e'p 8	I, 10	AKTAS	2005A	INDU
<0.6E-36	> 265	1	1800	pp	11	KALBFLEISCH	2004	INDU
<0.2E-36	> 355	2	1800	pp	11	KALBFLEISCH	2004	INDU
<0.07E-36	> 410	3	1800	pp	11	KALBFLEISCH	2004	NDU
<0.2E-36	> 375	6	1800	pp	11	KALBFLEISCH	200	INDU
<0.7E-36	> 295	1	1800		13	KALBFLEISCH	2000	INDU
<7.8E-36	> 260	2	1800		, 13	KALBFLEISCH	2000	INDU
<2.3E-36	> 325	3	1800		, 14	KALBFLEISCH	2000	INDU
<0.11E-36	> 420	6	1800		14	KALBFLEISCH	2000	INDU
<0.65E-33	< 3.3	> 2	n (HE	1997	
<1.90E-33	< 8.1	2 2	160		, 16	HE	1997	

ミト ▲ ミト 「ヨー • のへ()

Heavy-ion	collisions at SPS		
Introduction	Collisions of "small" particles	Heavy-ion collisions	Conclusions
00000000		0000000●0	00

Magnetic monopole search in heavy-ion collisions at SPS (He 1997)

- Pb-Pb collisions at $\sqrt{s_{NN}} \approx 17 \text{GeV}$.
- Experimental bound derived,

$$\sigma_{M\bar{M}} \lesssim \sigma_{UB} = 1.9$$
nb.

• Only sensitive to
$$g \geq 2g_D$$
.

From this, and by comparison with the calculated cross section, we derive the following mass bound,

$$m \gtrsim \left(2.0 + 2.6 \left(\frac{g}{g_D}\right)^{3/2}\right) \text{GeV}.$$

Introduction 00000000 Collisions of "small" particles

Heavy-ion collisions

Conclusions 00

Experimental prospects

- ATLAS and MoEDAL have conducted magnetic monopole searches in pp collisions at LHC. No searches yet in heavy ions!
- LHC PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV happened in November 2018.

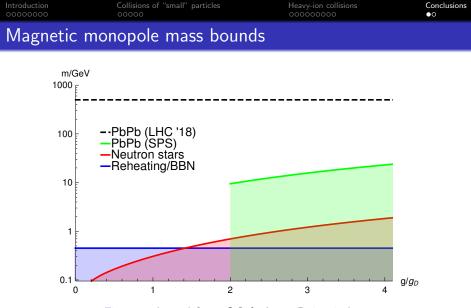


Figure: adapted from OG & Arttu Rajantie '17.

Current best	answers to our questi	ions	
	answers to our questi		

If composite magnetic monopoles exist, how can they be created?

 \overline{pp} collisions, e^+e^- collisions ...

PbPb collisions \checkmark , AuAu collisions \checkmark ,...

If elementary magnetic monopoles exist, how can they be created?

pp collisions? e^+e^- collisions? ...

PbPb collisions \checkmark , AuAu collisions \checkmark ,...

Current best	answers to our questi	ions	
	answers to our questi		

If composite magnetic monopoles exist, how can they be created?

 \overline{pp} collisions, e^+e^- collisions ...

PbPb collisions \checkmark , AuAu collisions \checkmark ,...

If elementary magnetic monopoles exist, how can they be created?

pp collisions? e^+e^- collisions? ...

PbPb collisions \checkmark , AuAu collisions \checkmark , \ldots

Thank you for listening!