Particle production in photon – photon interactions at hadronic colliders: Recent results and prospects

Victor P. Goncalves

High and Medium Energy Group

Federal University of Pelotas (UFPel) – Brazil
Motivation

Photon – Induced Interactions:

Center of mass energies

LHC = Photon collider

1. γh Processes: $\sigma(h_1 h_2 \rightarrow X) = n_h(\omega) \otimes \sigma^{\gamma h \rightarrow X} (W_{\gamma h})$

2. $\gamma\gamma$ Processes: $\sigma(h_1 h_2 \rightarrow X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma\gamma \rightarrow X} (W_{\gamma\gamma})$
Motivation

Photon – Induced Interactions:

Center of mass energies

<table>
<thead>
<tr>
<th>LHC</th>
<th>Interaction</th>
<th>Energy Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$W_{\gamma p}$ (\lesssim 8390) GeV</td>
<td>$W_{\gamma p} \lesssim 4504) GeV</td>
</tr>
<tr>
<td>pPb(Ar)</td>
<td>$W_{\gamma A}$ (\lesssim 1500) GeV</td>
<td>$W_{\gamma A} \lesssim 260) GeV</td>
</tr>
<tr>
<td>PbPb</td>
<td>$W_{\gamma A}$ (\lesssim 950) GeV</td>
<td>$W_{\gamma A} \lesssim 160) GeV</td>
</tr>
<tr>
<td>ep</td>
<td>$W_{\gamma p}$ (\lesssim 200) GeV</td>
<td>-</td>
</tr>
</tbody>
</table>

LHC allow us to probe the particle production by photon – photon interactions in a energy range unexplored by LEP and higher than that proposed for the ILC.
LHC = Photon collider

\[\sigma (h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2 ; s) = \int \hat{\sigma} (\gamma \gamma \rightarrow R ; W) N (\omega_1, b_1) N (\omega_2, b_2) S_{\text{abs}}^2 (b) d^2 b_1 d^2 b_2 d\omega_1 d\omega_2 \]
Motivation

Photon – Induced Interactions:

Center of mass energies

LHC = Photon collider

\[\sigma (h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2; s) = \int \delta (\gamma \gamma \rightarrow R; W) N (\omega_1, b_1) N (\omega_2, b_2) S_{abs}^2 (b) d^2 b_1 d^2 b_2 d\omega_1 d\omega_2 \]

\[\sigma^{PbPb} (\gamma \gamma) \approx Z^2 \sigma^{pp} (\gamma \gamma) \approx Z^4 \sigma^{pp} (\gamma \gamma) \]
Resonance production

\[\sigma (h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2; s) = \int \delta (\gamma \gamma \rightarrow R; W) \, N (\omega_1, b_1) \, N (\omega_2, b_2) \, S_{abs}^2 (b) \, d^2 b_1 \, d^2 b_2 \, d\omega_1 \, d\omega_2 \]

\[\sigma_{\gamma \gamma \rightarrow R}(\omega_1, \omega_2) = 8\pi^2 (2J + 1) \frac{\Gamma_{R \rightarrow \gamma \gamma}}{M_R} \delta (4\omega_1 \omega_2 - M_R^2) \]
Photon – Induced Interactions:

Motivation

Resonance production

\[
\sigma (h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2; s) = \int \hat{\sigma} (\gamma \gamma \rightarrow R; W) N (\omega_1, b_1) N (\omega_2, b_2) S_{abs}^2 (b) d_2 b_1 d_2 b_2 d \omega_1 d \omega_2
\]

\[
\sigma_{\gamma \gamma \rightarrow R}(\omega_1, \omega_2) = 8 \pi^2 (2 J + 1) \frac{\Gamma_{R \gamma \gamma}}{M_R} \delta (4 \omega_1 \omega_2 - M_R^2)
\]
Photon – Induced Interactions:

Resonance production

\[\sigma(h_1 h_2 \to h_1 \otimes R \otimes h_2; s) = \int \hat{\sigma} (\gamma \gamma \to R; W) N(\omega_1, b_1) N(\omega_2, b_2) S^2_{\text{abs}}(b) d^2b_1 d^2b_2 d\omega_1 d\omega_2 \]

\[\sigma_{\gamma \gamma \to R}(\omega_1, \omega_2) = 8\pi^2(2J + 1) \left(\frac{\Gamma_{R \gamma \gamma}}{M_R} \right) \delta(4\omega_1 \omega_2 - M_R^2) \]
Resonance production

\[\sigma (h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2; s) = \int \delta (\gamma \gamma \rightarrow R; W) N (\omega_1, b_1) N (\omega_2, b_2) S_{abs}^2 (b) d^2 b_1 d^2 b_2 d\omega_1 d\omega_2 \]

\[\sigma_{\gamma\gamma \rightarrow R}(\omega_1, \omega_2) = 8\pi^2 (2J + 1) \frac{\Gamma_{R \rightarrow \gamma\gamma}}{M_R} \delta(4\omega_1 \omega_2 - M_R^2) \]
Photoproduction of X(4350):

Constrained by Belle Collaboration.
Probing Exotic Charmoniumlike states in photon – photon interactions

Photoproduction of $X(4350)$:

Constrained by Belle Collaboration.
Probing Exotic Charmoniumlike states in photon – photon interactions

Photoproduction of $X(4350)$:

Constrained by Belle Collaboration.

<table>
<thead>
<tr>
<th>Collision</th>
<th>Resonance</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp ($\sqrt{s} = 13$ TeV)</td>
<td>$X(4350)$, 0^{++}</td>
<td>$2.47 - 6.13$ fb</td>
</tr>
<tr>
<td></td>
<td>$X(4350)$, 2^{++}</td>
<td>$2.52 - 6.88$ fb</td>
</tr>
<tr>
<td>pPb ($\sqrt{s} = 8.1$ TeV)</td>
<td>$X(4350)$, 0^{++}</td>
<td>$(10.20 - 25.30)$ pb</td>
</tr>
<tr>
<td></td>
<td>$X(4350)$, 2^{++}</td>
<td>$(10.30 - 28.30)$ pb</td>
</tr>
<tr>
<td>$PbPb$ ($\sqrt{s} = 5.02$ TeV)</td>
<td>$X(4350)$, 0^{++}</td>
<td>$(14.60 - 36.20)$ nb</td>
</tr>
<tr>
<td></td>
<td>$X(4350)$, 2^{++}</td>
<td>$(14.90 - 40.60)$ nb</td>
</tr>
</tbody>
</table>

Such channel can be used to confirm (or not) the existence of resonances observed in e^+e^- colliders.
Motivation

Photon – Induced Interactions:

Probing Exotic Charmoniumlike states in photon – photon interactions

\[
\sigma(h_1 h_2 \rightarrow h_1 \otimes R \otimes h_2; s) = \int \sigma(\gamma\gamma \rightarrow R; W) N(\omega_1, b_1) N(\omega_2, b_2) S_{abs}^2(b_1) d^2b_1 d^2b_2 d\omega_1 d\omega_2
\]

\[
\sigma_{\gamma\gamma \rightarrow R}(\omega_1, \omega_2) = 8\pi^2(2J + 1)\frac{\Gamma_{R \rightarrow \gamma\gamma}}{M_R} \delta(4\omega_1\omega_2 - M_R^2)
\]

Probing Exotic Charmoniumlike states in photon – photon interactions

Table I: Cross sections for exotic meson production in Pb-Pb collisions using the theoretical decay rates presented in Refs. [34–36].

<table>
<thead>
<tr>
<th>State</th>
<th>Mass</th>
<th>$\Gamma_{\gamma\gamma}^{\text{theor}}$ (keV)</th>
<th>$\sigma_{b_{\min}}$ (μb)</th>
<th>σ_F (μb)</th>
<th>σ_R (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.76 TeV</td>
<td>5.5 TeV</td>
<td>39 TeV</td>
<td>2.76 TeV</td>
</tr>
<tr>
<td>$X(3940), 0^{++}$</td>
<td>3943</td>
<td>0.33</td>
<td>4.2</td>
<td>8.2</td>
<td>31.6</td>
</tr>
<tr>
<td>$X(3940), 2^{++}$</td>
<td>3943</td>
<td>0.27</td>
<td>17.2</td>
<td>33.6</td>
<td>129.2</td>
</tr>
<tr>
<td>$X(4140), 0^{++}$</td>
<td>4143</td>
<td>0.63</td>
<td>6.5</td>
<td>12.9</td>
<td>51.2</td>
</tr>
<tr>
<td>$X(4140), 2^{++}$</td>
<td>4143</td>
<td>0.50</td>
<td>26.0</td>
<td>51.2</td>
<td>201.0</td>
</tr>
<tr>
<td>$Z(3930), 2^{++}$</td>
<td>3922</td>
<td>0.083</td>
<td>5.4</td>
<td>10.5</td>
<td>40.9</td>
</tr>
<tr>
<td>$X(4160), 2^{++}$</td>
<td>4169</td>
<td>0.363</td>
<td>18.4</td>
<td>36.4</td>
<td>144.2</td>
</tr>
<tr>
<td>$Y_p(3912), 2^{++}$</td>
<td>3919</td>
<td>0.774</td>
<td>50.5</td>
<td>98.6</td>
<td>382.4</td>
</tr>
<tr>
<td>$X(3915), 0^{++}$</td>
<td>3919</td>
<td>0.20</td>
<td>2.6</td>
<td>5.1</td>
<td>19.8</td>
</tr>
</tbody>
</table>

Table III: Cross sections for exotic meson production in pp collisions using the theoretical decay rates presented in Refs. [34–36].

<table>
<thead>
<tr>
<th>State</th>
<th>Mass</th>
<th>$\Gamma_{\gamma\gamma}^{\text{theor}}$ (keV)</th>
<th>$\sigma_{b_{\min}}$ (pb)</th>
<th>σ_F (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7 TeV</td>
<td>14 TeV</td>
<td>100 TeV</td>
</tr>
<tr>
<td>$X(3940), 0^{++}$</td>
<td>3943</td>
<td>0.33</td>
<td>0.98</td>
<td>1.3</td>
</tr>
<tr>
<td>$X(3940), 2^{++}$</td>
<td>3943</td>
<td>0.27</td>
<td>4.0</td>
<td>5.6</td>
</tr>
<tr>
<td>$X(4140), 0^{++}$</td>
<td>4143</td>
<td>0.63</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>$X(4140), 2^{++}$</td>
<td>4143</td>
<td>0.50</td>
<td>6.2</td>
<td>8.7</td>
</tr>
<tr>
<td>$Z(3930), 2^{++}$</td>
<td>3922</td>
<td>0.083</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td>$X(4160), 2^{++}$</td>
<td>4169</td>
<td>0.363</td>
<td>4.4</td>
<td>6.1</td>
</tr>
<tr>
<td>$Y_p(3912), 2^{++}$</td>
<td>3919</td>
<td>0.774</td>
<td>11.7</td>
<td>16.3</td>
</tr>
<tr>
<td>$X(3915), 0^{++}$</td>
<td>3919</td>
<td>0.20</td>
<td>0.60</td>
<td>0.84</td>
</tr>
</tbody>
</table>

(*) Bertulani, VPG, Moreira, Navarra, PRD 94, 094024 (2016)
Dilepton production

\[\sigma(PbPb \rightarrow Pb \otimes l^+l^- \otimes Pb; s) = \int d^2b_1d^2b_2d\omega_1d\omega_2 \; \hat{\sigma}(\gamma\gamma \rightarrow l^+l^-; W) \; N(\omega_1, b_1) \; N(\omega_2, b_2) \; S^2_{\text{abs}}(b) \]
Motivation

Photon - Induced Interactions:

Center of mass energies

Dilepton production - pp collisions

DOUBLE DIFFRACTION

SINGLE DIFFRACTION

(*) VPG, Jaime, Martins, Rangel, PRD97, 074024 (2018)
Dilepton production – pp collisions –

\[
\sigma(h_1 h_2 \rightarrow h_1 \otimes X \mu^+ \mu^- X' \otimes h_2) = \int dx_1 \int dx_2 \left[q_1^D(x_1, Q^2) \cdot \bar{q}_2^D(x_2, Q^2) + \bar{q}_1^D(x_1, Q^2) \cdot q_2^D(x_2, Q^2) \right] \cdot \hat{\sigma}(q\bar{q} \rightarrow \mu^+ \mu^-)
\]

(*) VPG, Jaime, Martins, Rangel, PRD97, 074024 (2018)
Dilepton production
- pp collisions -

\[\sigma(h_1 h_2 \rightarrow Y \mu^+ \mu^- X \otimes h_1) = \int dx_1 \int dx_2 [q_1^D(x_1, Q^2) \cdot \bar{q}_2(x_2, Q^2) + q_1(x_1, Q^2) \cdot \bar{q}_2^D(x_2, Q^2) + (q \leftrightarrow \bar{q})] \cdot \hat{\sigma}(q\bar{q} \rightarrow \mu^+ \mu^-) \]

(*) VPG, Jaime, Martins, Rangel, PRD97, 074024 (2018)
Dilepton production
- pp collisions -

W/o cuts:

(*) VPG, Jaime, Martins, Rangel, PRD97, 074024 (2018)

<table>
<thead>
<tr>
<th>Process</th>
<th>PP</th>
<th>PR + RP</th>
<th>RR</th>
<th>DD</th>
<th>p</th>
<th>Pp</th>
<th>Rp</th>
<th>SD</th>
<th>$\gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cross Section [pb]</td>
<td>31.0</td>
<td>27.0</td>
<td>6.1</td>
<td>64.1</td>
<td>694.0</td>
<td>425.0</td>
<td>1119.0</td>
<td>7101.1</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Photon – Induced Interactions:

- Center of mass energies
- Dilepton production - pp collisions

Including cuts:

<table>
<thead>
<tr>
<th>Cut \ Process</th>
<th>PP</th>
<th>PR + RP</th>
<th>RR</th>
<th>DD</th>
<th>Pp</th>
<th>Rp</th>
<th>SD</th>
<th>$\gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cut</td>
<td>31.0</td>
<td>27.0</td>
<td>6.1</td>
<td>64.1</td>
<td>694.0</td>
<td>425.0</td>
<td>1119.0</td>
<td>7101.1</td>
</tr>
<tr>
<td>$1. p_T (\mu^\pm) > 0.4 \text{ GeV}$</td>
<td>28.6</td>
<td>23.9</td>
<td>4.5</td>
<td>57.3</td>
<td>616.4</td>
<td>310.3</td>
<td>926.7</td>
<td>2601.3</td>
</tr>
<tr>
<td>$2. \text{ Inv. mass range } 1.0 \leq M_{\mu^+\mu^-} \leq 20 \text{ GeV}$</td>
<td>23.3</td>
<td>19.3</td>
<td>2.6</td>
<td>45.2</td>
<td>499.6</td>
<td>189.5</td>
<td>689.1</td>
<td>1531.1</td>
</tr>
<tr>
<td>$3. p_T^2 (\mu^+\mu^-) < 2 \text{ GeV}^2$</td>
<td>16.5</td>
<td>13.0</td>
<td>1.5</td>
<td>31.0</td>
<td>236.1</td>
<td>82.2</td>
<td>318.2</td>
<td>1529.5</td>
</tr>
<tr>
<td>$4. \eta \text{ in the CMS acceptance}$</td>
<td>5.7</td>
<td>3.4</td>
<td>0.8</td>
<td>9.8</td>
<td>66.6</td>
<td>46.9</td>
<td>113.5</td>
<td>775.3</td>
</tr>
<tr>
<td>$\eta \text{ in the LHCb acceptance}$</td>
<td>1.7</td>
<td>1.4</td>
<td>0.1</td>
<td>3.2</td>
<td>20.8</td>
<td>6.2</td>
<td>27.0</td>
<td>46.6</td>
</tr>
<tr>
<td>$5. \text{ Exclusivity: CMS}$</td>
<td>1.3</td>
<td>1.2</td>
<td>0.5</td>
<td>3.0</td>
<td>16.4</td>
<td>12.3</td>
<td>28.7</td>
<td>775.3</td>
</tr>
<tr>
<td>$\text{Exclusivity: Backward and forward LHCb}$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.2</td>
<td>0.9</td>
<td>0.6</td>
<td>1.4</td>
<td>46.6</td>
</tr>
</tbody>
</table>

Dominated by photon – photon interactions!
Motivation

Photon – Induced Interactions:

- Center of mass energies
- Dilepton production - pp collisions

Including cuts:

<table>
<thead>
<tr>
<th>Cut</th>
<th>Process</th>
<th>PP</th>
<th>PR + RP</th>
<th>RR</th>
<th>DD</th>
<th>Pp</th>
<th>Rp</th>
<th>SD</th>
<th>$\gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cut</td>
<td></td>
<td>31.0</td>
<td>27.0</td>
<td>6.1</td>
<td>64.1</td>
<td>694.0</td>
<td>425.0</td>
<td>1119.0</td>
<td>7101.1</td>
</tr>
<tr>
<td>1. $p_T (\mu^\pm) > 0.4 \text{GeV}$</td>
<td></td>
<td>28.6</td>
<td>23.9</td>
<td>4.5</td>
<td>57.0</td>
<td>616.4</td>
<td>310.3</td>
<td>926.7</td>
<td>2601.3</td>
</tr>
<tr>
<td>2. Inv. mass range $1.0 \leq M_{\mu^+\mu^-} \leq 20 \text{ GeV}$</td>
<td></td>
<td>23.3</td>
<td>19.3</td>
<td>2.6</td>
<td>45.2</td>
<td>499.6</td>
<td>189.5</td>
<td>689.1</td>
<td>1531.1</td>
</tr>
<tr>
<td>3. $p_T^2 (\mu^+\mu^-) > 2 \text{ GeV}^2$</td>
<td></td>
<td>4.7</td>
<td>4.2</td>
<td>0.6</td>
<td>9.6</td>
<td>166.8</td>
<td>63.3</td>
<td>230.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4. η in the CMS acceptance</td>
<td></td>
<td>2.2</td>
<td>1.7</td>
<td>0.3</td>
<td>4.3</td>
<td>70.4</td>
<td>38.5</td>
<td>108.9</td>
<td>0.04</td>
</tr>
<tr>
<td>η in the LHCb acceptance</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>0.1</td>
<td>1.2</td>
<td>17.6</td>
<td>5.8</td>
<td>23.4</td>
<td>0.005</td>
</tr>
<tr>
<td>5. Exclusivity: CMS</td>
<td></td>
<td>0.04</td>
<td>0.2</td>
<td>0.08</td>
<td>0.3</td>
<td>1.5</td>
<td>2.1</td>
<td>3.6</td>
<td>0.04</td>
</tr>
<tr>
<td>Exclusivity: Backward and forward LHCb</td>
<td>8 \times 10$^{-4}$</td>
<td>0.002</td>
<td>5 \times 10$^{-4}$</td>
<td>0.004</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Dominated by diffractive interactions!
Dilepton production in PbPb collisions

\[\sigma (PbPb \to Pb \otimes l^+ l^- \otimes Pb; s) = \int d^2b_1 d^2b_2 d\omega_1 d\omega_2 \hat{\sigma} (\gamma \gamma \to l^+ l^-; W) N (\omega_1, b_1) N (\omega_2, b_2) S_{abs}^2 (b) \]
Dilepton production

- PbPb collisions

\[\sigma (PbPb \to Pb \otimes l^+ l^- \otimes Pb; s) = \int d^2b_1 d^2b_2 d\omega_1 d\omega_2 \, \hat{\sigma} (\gamma \gamma \to l^+ l^-; W) \, N(\omega_1, b_1) \, N(\omega_2, b_2) \, S_{abs}^2 (b) \]

(*) Azevedo, VPG, Moreira, EPJC79, 432 (2019)
Dilepton production

- PbPb collisions

\[\sigma (\text{PbPb} \rightarrow \text{Pb} \otimes l^+ l^- \otimes \text{Pb}; s) = \int d^2b_1 d^2b_2 d\omega_1 d\omega_2 \hat{\sigma} (\gamma \gamma \rightarrow l^+ l^- ; W) N(\omega_1, b_1) N(\omega_2, b_2) S_{\text{abs}}^2(b) \]

(*) Azevedo, VPG, Moreira, EPJC79, 432 (2019)
Dilepton production

\[\sigma (\text{PbPb} \rightarrow \text{Pb} \otimes l^+l^- \otimes \text{Pb}; s) = \int d^2b_1 d^2b_2 d\omega_1 d\omega_2 \hat{\sigma} (\gamma\gamma \rightarrow l^+l^-; W) N(\omega_1, b_1) N(\omega_2, b_2) S_{abs}^2 (b) \]

(*) Azevedo, VPG, Moreira, EPJC79, 432 (2019)
Dilepton production
- PbPb collisions -

\[
\sigma \left(\text{PbPb} \rightarrow \text{Pb} \otimes l^+l^- \otimes \text{Pb} ; s \right) = \int d^2 b_1 d^2 b_2 d\omega_1 d\omega_2 \hat{\sigma} \left(\gamma\gamma \rightarrow l^+l^- ; W \right) N(\omega_1, b_1) N(\omega_2, b_2) S_{abs}^2(b)
\]

(*) Azevedo, VPG, Moreira, EPJC79, 432 (2019)
Motivation

Photon–Induced Interactions:

Center of mass energies

Dilepton production - PbPb collisions

Including experimental cuts:
Dilepton production - PbPb collisions -

Including experimental cuts:
Prospects
Probing Exotic Charmoniumlike states in
photon - hadron interactions

Photoproduction of $Z_c(3900)^+$:

$\sigma(pp \rightarrow pJ/\Psi\pi)$

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Resonance</th>
<th>Contribution</th>
<th>σ [nb] ($\sqrt{s} = 0.2$ TeV)</th>
<th>σ [nb] ($\sqrt{s} = 7$ TeV)</th>
<th>σ [nb] ($\sqrt{s} = 14$ TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(pp \rightarrow pJ/\Psi\pi)$</td>
<td>$Z_c(3900)$</td>
<td>IP</td>
<td>1.15</td>
<td>8.18 – 9.64</td>
<td>10.33 – 12.65</td>
</tr>
</tbody>
</table>

Cross sections are enhanced by a factor Z^2 in pPb collisions.

The enhancement occurs at very large rapidities (small photon – proton center – of – mass energies)!
Exclusive VM photoproduction in fixed target collisions at the LHC

* Beam – gas collisions have been studied by the LHCb Collaboration and a similar programme can be developed by the AFTER@LHC experiment;

* Such collisions allows to study the vector meson photoproduction at low energies.

(*) VPG, Medina EPJC78, 693 (2018)
Exclusive VM photoproduction in fixed target collisions at the LHC

* Beam – gas collisions have been studied by the LHCb Collaboration and a similar programme can be developed by the AFTER@LHC experiment;

* Such collisions allows to study the vector meson photoproduction at low energies.

(*) VPG, Medina EPJC78, 693 (2018)
Exclusive VM photoproduction in fixed target collisions at the LHC

(⁎) VPG, Medina EPJC78, 693 (2018)
Probing Pentaquarks in photon – hadron interactions

Photoproduction of P_c:

Probing Pentaquarks in photon – hadron interactions

Photoproduction of P_c:

VPG, Medina, work in progress.
Probing Pentaquarks in photon–hadron interactions

Photoproduction of P_c:

VPG, Medina, work in progress.
Photon-induced interactions can be used to constrain the physics in unexplored energy regime.

We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.

The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.

Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed-target collisions at the LHC.
Photon-induced interactions can be used to constrain the physics in unexplored energy regime.

We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.

The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.

Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed-target collisions at the LHC.
Photon-induced interactions can be used to constrain the physics in unexplored energy regime. We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics. The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models. Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed-target collisions at the LHC.
Photon-induced interactions can be used to constrain the physics in unexplored energy regime. We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics. The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models. Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed-target collisions at the LHC.
Photon-induced interactions can be used to constrain the physics in unexplored energy regime. We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics. The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models. Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed-target collisions at the LHC.

Thank you for your attention!