

Particle production in photon – photon interactions at hadronic colliders: Recent results and prospects

Victor P. Goncalves

High and Medium Energy Group

Federal University of Pelotas (UFPel) - Brazil

INFN - Frascati 04 June 2019

1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$ 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

b>R₁+R₂

1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$ 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

Center of mass energies

LHC	pp	$W_{\gamma p} \lesssim 8390~{ m GeV}$	$W_{\gamma\gamma} \lesssim 4504~{ m GeV}$
LHC	pPb(Ar)	$W_{\gamma A} \lesssim 1500(2130)~{ m GeV}$	$W_{\gamma\gamma} \lesssim 260(480)~{ m GeV}$
LHC	PbPb	$W_{\gamma A} \lesssim 950~{ m GeV}$	$W_{\gamma\gamma} \lesssim 160~{ m GeV}$
HERA	ep	$W_{\gamma p} \lesssim 200~{ m GeV}$	

LHC allow us to probe the particle production by photon photon interactions in a energy range unexplorated by LEP and higher than that proposed for the ILC.

 $\sigma\left(h_{1}h_{2} \to h_{1} \otimes R \otimes h_{2};s\right) = \int \hat{\sigma}\left(\gamma\gamma \to R;W\right) N\left(\omega_{1},\mathbf{b}_{1}\right) N\left(\omega_{2},\mathbf{b}_{2}\right) S_{abs}^{2}(\mathbf{b}) \mathrm{d}^{2}\mathbf{b}_{1} \mathrm{d}^{2}\mathbf{b}_{2} \mathrm{d}\omega_{1} \mathrm{d}\omega_{2}$

 $\sigma\left(h_{1}h_{2} \rightarrow h_{1} \otimes R \otimes h_{2};s\right) = \int \hat{\sigma}\left(\gamma\gamma \rightarrow R;W\right) N\left(\omega_{1},\mathbf{b}_{1}\right) N\left(\omega_{2},\mathbf{b}_{2}\right) S_{abs}^{2}(\mathbf{b}) \mathrm{d}^{2}\mathbf{b}_{1} \mathrm{d}^{2}\mathbf{b}_{2} \mathrm{d}\omega_{1} \mathrm{d}\omega_{2}$

 $\sigma^{PbPb}(\gamma\gamma) \approx Z^2 \sigma^{pPb}(\gamma\gamma) \approx Z^4 \sigma^{pp}(\gamma\gamma)$

 $\sigma \left(h_1 h_2 \to h_1 \otimes R \otimes h_2; s \right) = \int \hat{\sigma} \left(\gamma \gamma \to R; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b}) \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2$ $\sigma_{\gamma\gamma \to R}(\omega_1, \omega_2) = 8\pi^2 (2J+1) \frac{\Gamma_R \to \gamma\gamma}{M_R} \delta(4\omega_1 \omega_2 - M_R^2)$

$$\sigma (h_1 h_2 \to h_1 \otimes R \otimes h_2; s) = \int \hat{\sigma} (\gamma \gamma \to R; W) N(\omega_1, \mathbf{b}_1) N(\omega_2, \mathbf{b}_2) S_{abs}^2(\mathbf{b}) \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2$$
$$\sigma_{\gamma\gamma \to R}(\omega_1, \omega_2) = 8\pi^2 (2J + 1) \frac{\Gamma_{R \to \gamma\gamma}}{M_R} \delta(4\omega_1 \omega_2 - M_R^2)$$

 $\sigma \left(h_{1}h_{2} \to h_{1} \otimes R \otimes h_{2}; s\right) = \int \hat{\sigma} \left(\gamma \gamma \to R; W\right) N\left(\omega_{1}, \mathbf{b}_{1}\right) N\left(\omega_{2}, \mathbf{b}_{2}\right) S_{abs}^{2}(\mathbf{b}) \mathrm{d}^{2} \mathbf{b}_{1} \mathrm{d}^{2} \mathbf{b}_{2} \mathrm{d}\omega_{1} \mathrm{d}\omega_{2}$ $\sigma_{\gamma\gamma \to R}(\omega_{1}, \omega_{2}) = 8\pi^{2} (2J + 1) \underbrace{\prod_{R \to \gamma\gamma} \delta}_{M_{R}} \delta(4\omega_{1}\omega_{2} - M_{R}^{2})$

$$\sigma \left(h_1 h_2 \to h_1 \otimes R \otimes h_2; s\right) = \int \hat{\sigma} \left(\gamma \gamma \to R; W\right) N\left(\omega_1, \mathbf{b}_1\right) N\left(\omega_2, \mathbf{b}_2\right) S_{abs}^2(\mathbf{b}) \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2$$
$$\sigma_{\gamma\gamma \to R}(\omega_1, \omega_2) = 8\pi^2 (2J+1) \frac{\Gamma_{R \to \gamma\gamma}}{M_R} \delta(4\omega_1 \omega_2 - M_R^2)$$

Photoproduction of X(4350):

Photoproduction of X(4350):

VPG, Moreira, EPJC 79, 7 (2019).

Photoproduction of X(4350):

Constrained by Belle Collaboration.

Collision	Resonance	$\begin{array}{c} \text{LHCb} \\ 2 < Y < 4.5 \end{array}$
$pp \; (\sqrt{s} = 13 \text{ TeV})$	$X(4350), 0^{++}$ $X(4350), 2^{++}$	(2.47 - 6.13) fb (2.52 - 6.88) fb
$pPb \; (\sqrt{s} = 8.1 \text{ TeV})$	$X(4350), 0^{++}$ $X(4350), 2^{++}$	(10.20 - 25.30) pb (10.30 - 28.30) pb
$PbPb \ (\sqrt{s} = 5.02 \text{ TeV})$	$X(4350), 0^{++}$ $X(4350), 2^{++}$	(14.60 - 36.20) nb (14.90 - 40.60) nb

Such channel can be used to confirm (or not) the existence of resonances observed in e^+e^- colliders.

$$\sigma (h_1 h_2 \to h_1 \otimes R \otimes h_2; s) = \int \hat{\sigma} (\gamma \gamma \to R; W) N(\omega_1, \mathbf{b}_1) N(\omega_2, \mathbf{b}_2) S_{abs}^2(\mathbf{b}) \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2$$
$$\sigma_{\gamma\gamma \to R}(\omega_1, \omega_2) = 8\pi^2 (2J+1) \frac{\Gamma_R \to \gamma\gamma}{M_R} \delta(4\omega_1 \omega_2 - M_R^2)$$

(*) Bertulani, VPG, Moreira, Navarra, PRD94, 094024 (2016)

State	Mass	$\Gamma_{\gamma\gamma}^{theor}(\text{keV})$	σι	b_{min} (μ b)		($\sigma_F \ (\mu b)$		($\sigma_R \ (\mu b)$	
			2.76 Tev	5.5 TeV	39 TeV	2.76 TeV	5.5 TeV	39 TeV	2.76 TeV	5.5 TeV	39 TeV
$X(3940), 0^{++}$	3943	0.33	4.2	8.2	31.6	6.5	11.8	40.9	5.7	10.8	39.6
$X(3940), 2^{++}$	3943	0.27	17.2	33.6	129.2	26.5	48.4	167.4	23.4	44.2	162.0
$X(4140), 0^{++}$	4143		6.5	12.9	51.2	10.2	18.7	65.7	9.0	17.1	63.6
$X(4140), 2^{++}$	4143		26.0	51.2	201.0	40.3	74.3	260.6	35.5	67.7	252.3
Z(3930), 2 ⁺⁺	3922		5.4	10.5	40.9	8.3	15.2	52.4	7.4	13.9	50.5
$X(4160), 2^{++}$	4169	0.363	18.4	36.4	144.2	28.6	52.7	185.3	25.2	48.1	178.7
$Y_p(3912), 2^{++}$			50.5	98.6	382.4	77.9	142.2	490.1	68.9	129.9	473.7
$X(3915), 0^{++}$	3919	0.20	2.6	5.1	19.8	4.0	7.3	25.3	3.6	6.7	24.5

TABLE I: Cross sections for exotic meson production in Pb-Pb collisions using the theoretical decay rates presented in Refs. [34–36].

ſ	State	Mass	$\Gamma_{\gamma\gamma}^{theor}(\text{keV})$		$\sigma_{b_{min}}$ (p	b)		σ_F (pb)
l				7 Tev	14 1ev	100 TeV	$7 { m TeV}$	14 TeV	100 TeV
	X(3940), 0 ⁺⁺	3943	0.33	0.98	1.3	2.8	1.0	1.5	2.8
	X(3940), 2 ⁺⁺	3943	0.27	4.0	5.6	11.4	4.1	5.7	11.6
	$X(4140), 0^{++}$	4143	0.63	1.6	2.2	4.5	1.6	2.2	4.6
	$X(4140), 2^{++}$	4143	0.50	6.2	8.7	18.0	6.4	8.9	18.3
	Z(3930), 2 ⁺⁺	3922	0.083	1.2	1.7	3.6	1.3	1.8	3.6
	$X(4160), 2^{++}$	4169	0.363	4.4	6.1	12.8	4.5	6.3	13.0
	$Y_p(3912), 2^{++}$	3919	0.774	11.7	16.3	33.4	12.0	16.7	34.0
	X(3915), 0 ⁺⁺	3919	0.20	0.60	0.84	1.7	0.62	0.86	1.8

TABLE III: Cross sections for exotic meson production in pp collisions using the theoretical decay rates presented in Refs. [34–36].

(*) Bertulani, VPG, Moreira, Navarra, PRD94, 094024 (2016)

Dilepton production

 $\sigma \left(PbPb \to Pb \otimes l^{+}l^{-} \otimes Pb; s \right) = \int \mathrm{d}^{2}\mathbf{b}_{1} \mathrm{d}^{2}\mathbf{b}_{2} \mathrm{d}\omega_{1} \mathrm{d}\omega_{2} \ \hat{\sigma} \left(\gamma \gamma \to l^{+}l^{-}; W \right) N \left(\omega_{1}, \mathbf{b}_{1} \right) N \left(\omega_{2}, \mathbf{b}_{2} \right) S_{abs}^{2}(\mathbf{b})$

DOUBLE DIFFRACTION

SINGLE DIFFRACTION

DOUBLE DIFFRACTION

 $\begin{aligned} \sigma(h_1 h_2 \to h_1 \otimes X \mu^+ \mu^- X' \otimes h_2) &= \int dx_1 \int dx_2 \ \left[\begin{array}{c} q_1^D(x_1, Q^2) \cdot \bar{q}_2^D(x_2, Q^2) + \\ &\\ \bar{q}_1^D(x_1, Q^2) \cdot q_2^D(x_2, Q^2) \right] \cdot \hat{\sigma}(q\bar{q} \to \mu^+ \mu^-) \end{aligned}$

SINGLE DIFFRACTION

$$\sigma(h_1 h_2 \to Y \mu^+ \mu^- X \otimes h_i) = \int dx_1 \int dx_2 \left[q_1^D(x_1, Q^2) \cdot \bar{q}_2(x_2, Q^2) + q_1(x_1, Q^2) \cdot \bar{q}_2^D(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right] \cdot \hat{\sigma}(q\bar{q} \to \mu^+ \mu^-)$$

W/o cuts:

Process	\mathbb{PP}	$\mathbb{PR} + \mathbb{RP}$	\mathbb{RR}	DD	$\mathbb{P} p$	$\mathbb{R} oldsymbol{p}$	SD	$\gamma\gamma$
Total Cross Section [pb]	31.0	27.0	6.1	64.1	694.0	425.0	1119.0	7101.1

Including cuts:

Cut\Process	\mathbb{PP}	$\mathbb{PR} + \mathbb{RP}$	\mathbb{RR}	DD	$\mathbb{P}p$	$\mathbb{R}p$	\mathbf{SD}	$\gamma\gamma$
No cut	31.0	27.0	6.1	64.1	694.0	425.0	1119.0	7101.1
1. $p_T(\mu^{\pm}) > 0.4 \text{GeV}$	28.6	23.9	4.5	57.3	616.4	310.3	926.7	2601.3
2. Inv. mass range $1.0 \leq M_{\mu^+\mu^-} \leq 20~{\rm GeV}$	23.3	19.3	2.6	45.2	499.6	189.5	689.1	1531.1
3. $p_T^2 \left(\mu^+ \mu^- \right) < 2 \text{GeV}^2$	16.5	13.0	1.5	31.0	236.1	82.2	318.2	1529.5
4. η in the CMS acceptance	5.7	3.4	0.8	9.8	66.6	46.9	113.5	775.3
η in the LHCb acceptance	1.7	1.4	0.1	3.2	20.8	6.2	27.0	46.6
5. Exclusivity: CMS	1.3	1.2	0.5	3.0	16.4	12.3	28.7	775.3
Exclusivity: Backward and forward LHCb	0.1	0.1	0.01	0.2	0.9	0.6	1.4	46.6

Dominated by photon - photon interactions!

Including cuts:

Cut\Process	\mathbb{PP}	$\mathbb{PR} + \mathbb{RP}$	\mathbb{RR}	DD	$\mathbb{P}p$	$\mathbb{R}p$	SD	$\gamma\gamma$
No cut	31.0	27.0	6.1	64.1	694.0	425.0	1119.0	7101.1
1. $p_T(\mu^{\pm}) > 0.4 \text{GeV}$	28.6	23.9	4.5	57.0	616.4	310.3	926.7	2601.3
2. Inv. mass range $1.0 \le M_{\mu^+\mu^-} \le 20 \text{ GeV}$	23.3	19.3	2.6	45.2	499.6	189.5	689.1	1531.1
3. $p_T^2 \left(\mu^+ \mu^- \right) > 2 \text{GeV}^2$	4.7	4.2	0.6	9.6	166.8	63.3	230.1	0.1
4. η in the CMS acceptance	2.2	1.7	0.3	4.3	70.4	38.5	108.9	0.04
η in the LHCb acceptance	0.6	0.6	0.1	1.2	17.6	5.8	23.4	0.005
5. Exclusivity: CMS	0.04	0.2	0.08	0.3	1.5	2.1	3.6	0.04
Exclusivity: Backward and forward LHCb	$8 imes 10^{-4}$	0.002	$5 imes 10^{-4}$	0.004	0.01	0.01	0.02	0.005

Dominated by diffractive interactions!

 $\sigma \left(PbPb \to Pb \otimes l^+l^- \otimes Pb; s \right) = \int \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2 \ \hat{\sigma} \left(\gamma \gamma \to l^+l^-; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b})$

 $\sigma \left(PbPb \to Pb \otimes l^+l^- \otimes Pb; s \right) = \int d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d\omega_1 d\omega_2 \ \hat{\sigma} \left(\gamma \gamma \to l^+l^-; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b})$

 $\sigma \left(PbPb \to Pb \otimes l^+l^- \otimes Pb; s \right) = \int d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d\omega_1 d\omega_2 \ \hat{\sigma} \left(\gamma \gamma \to l^+l^-; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b})$

$$\sigma \left(PbPb \to Pb \otimes l^+l^- \otimes Pb; s \right) = \int \mathrm{d}^2 \mathbf{b}_1 \mathrm{d}^2 \mathbf{b}_2 \mathrm{d}\omega_1 \mathrm{d}\omega_2 \ \hat{\sigma} \left(\gamma \gamma \to l^+l^-; W \right) N \left(\omega_1, \mathbf{b}_1 \right) N \left(\omega_2, \mathbf{b}_2 \right) S_{abs}^2(\mathbf{b})$$

$$\sigma \left(PbPb \to Pb \otimes l^{+}l^{-} \otimes Pb; s \right) = \int \mathrm{d}^{2}\mathbf{b}_{1} \mathrm{d}^{2}\mathbf{b}_{2} \mathrm{d}\omega_{1} \mathrm{d}\omega_{2} \ \hat{\sigma} \left(\gamma\gamma \to l^{+}l^{-}; W \right) N\left(\omega_{1}, \mathbf{b}_{1}\right) N\left(\omega_{2}, \mathbf{b}_{2}\right) S_{abs}^{2}(\mathbf{b})$$

Including experimental cuts:

Including experimental cuts:

Reaction	Ressonance	Contribution	σ [nb] ($\sqrt{s} = 0.2$ TeV)	σ [nb] ($\sqrt{s} = 7$ TeV)	σ [nb] ($\sqrt{s} = 14$ TeV)
$\sigma(pp \to pJ/\Psi \pi n)$	$- Z_c(3900)$	\mathbb{IP} $\mathbb{IP} + \pi$	$1.15 \\ 3.83$	8.18 - 9.64 14.13 - 15.52	10.33 - 12.65 16.89 - 19.12
Cros	s sectio	ins are e	nhanced by a	factor Z^2 in	pPb collisions.

VPG, Silva, PRD 89, 114005 (2014).

The enhancement occurs at very large rapidities (small photon - proton center - of - mass energies)!

VPG, Silva, PRD 89, 114005 (2014).

Exclusive VM photoproduction in fixed target collisions at the LHC

* Beam - gas collisions have been studied by the LHCb Collaboration and a similar programme can be developed by the AFTER@LHC experiment;

* Such collisions allows to study the vector meson photoproduction at low energies.

(*) VPG, Medina EPJC78, 693 (2018)

Exclusive VM photoproduction in fixed target collisions at the LHC

* Beam - gas collisions have been studied by the LHCb Collaboration and a similar programme can be developed by the AFTER@LHC experiment;

* Such collisions allows to study the vector meson photoproduction at low energies.

(*) VPG, Medina EPJC78, 693 (2018)

Exclusive VM photoproduction in fixed target collisions at the LHC

Rho

Omega

Probing Pentaquarks in photon – hadron interactions

Photoproduction of P:

Cao, Dai, ArXiv: 1904.06015[hep-ph].

Probing Pentaquarks in photon – hadron interactions

Photoproduction of P:

VPG, Medina, work in progress.

Probing Pentaquarks in photon – hadron interactions

Photoproduction of P:

VPG, Medina, work in progress.

- ✓ Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- ✓ The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.
- ✓ Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed target collisions at the LHC.

- Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- ✓ The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.
- ✓ Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed target collisions at the LHC.

- Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- ✓ The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.
- ✓ Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed target collisions at the LHC.

- Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- ✓ The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.
- Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed - target collisions at the LHC.

- Photon induced interactions can be used to constrain the physics in unexplorated energy regime.
- ✓ We can learn a lot of physics studying the HE regime. However, the analysis of the low energy regime is also very important to constrain some important aspects of hadronic physics.
- ✓ The RHIC and LHC data for the photoproduction of different final states will be fundamental to constrain and/or discriminate between different models.
- ✓ Complementary studies can be performed by the analysis of the exclusive vector meson photoproduction in polarized hadronic collisions and in fixed target collisions at the LHC.

Thank you for your attention!