

SuperKEKB and Belle II status, and prospects on two-photon physics

B.Shwartz, on behalf of BELLE II collaboration

Budker Institute of Nuclear Physics Novosibirsk State University Novosibirsk, Russia

The KEKB Collider

World record: $L = 2 \times 10^{34} / \text{cm}^2 / \text{sec}$

KEKB

uest for CPV

KEKB

Mt. Tsukuba

8 x 3.5 GeV 22 mrad crossing angle

The primary goal of the Belle and BaBar experiments was to discover the CP violation in B mesons and to measure the parameters of CPV. This was achieved by both experiments in 2001

However, a lot of other important results were obtained

- Observation of direct CP violation in B decays
- •Measurements of the CPV parameters in different modes (ϕK^0 , $\eta' K^0$, $K_S K_S K_S$, ...)
- •Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- Observation of new charmonium-like and bottomonium-like hadronic states
- $^{\bullet}$ b →s transitions: probe for new sources of CPV and constraints from the b →sγ branching fraction
- •Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- *Search for lepton flavour violation in τ decays
- •Study of the hadronic τ decays
- •Precise measurement of the hadronic cross sections in $\gamma\gamma$ and e⁺e⁻(γ_{ISR}) processes

So wide researches area become possible because of clean event environment and well defined initial state in the e⁺e⁻ experiments as well as high luminosity and general purpose detectors

Two-Photon Measurements at Belle

GeV

cost*

fb-1

Ref.

year

γ J/ ψ	3.2 - 3.8		32.6	PLB540, 33	2002
π+π-	2.4 - 4.1	0.6	88	PLB15, 39	2005
	0.8 -1.5	0.6	86	PRD75, 051101	2007
				JPhySocJpn76, 074102 2007	
K+K-	1.4 - 2.4	0.6	67	EPJC32, 323	2003
	2.4 - 4.1	0.6	88	PLB15, 39	2005
ppbar	2.0 - 4.0	0.6	89	PLB621, 41	2005
4 mesons	2.75 - 3.75		395	EPJC53, 1	2006
KsKs	2.4 - 4.0	0.6	398	PLB651, 15	2007
	1.05 - 4.0	0.8	972	PTEP2013, 123C01	2013
π0π0	0.6 - 4.0	0.8	95	PRD78, 052004	2008
	0.6 - 4.1	0.8	223	PRD79, 052009	2009
ηπ0	0.84 - 4.0	0.8	223	PRD80, 032001	2009
ηη	1.096 - 3.8	1.0	393	PRD82, 114031	2010
ω J/ ψ	3.9 - 4.2		694	PRL104, 092001	2010
ϕ J/ ψ	4.2 - 5.0		825	PRL104, 112004	2010
$\omega\omega,\omega\phi,\phi\phi$	thr - 4.0		870	PRL108, 232001	2012
η'π+π-	1.4 - 3.4		673	PRD86, 052002	2012
π0	Q2ε[4,40]GeV2		759	PRD86, 092007	2012
π0π0	Q2<30GeV2 Phot	on 2010 I	759 rascati, 980	PRD93, 032003 Italy	2016
ppbarK+K-	3.2 - 5.6	011 2019, 1	980	PRD93, 112017	2016

Recent results
from twophoton
processes at
Belle – the talk
of Wenbiao
Yan at this
conference

05.06.2019

Design Concept of SuperKEKB

Increase the luminosity by 40 times based on "Nano-Beam" scheme, which was first proposed for SuperB by P. Raimondi.

Luminosity Gain

Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm $(\times 20)$

Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A}$ $(\times 2)$

Beam-beam parameter: $.09 \rightarrow .09$ $(\times 1)$

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \left(\frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \right) \frac{R_L}{R_y} \right) = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Beam energy: $3.5/8.0 \rightarrow 4.0/7.0 \text{ GeV}$

LER: Longer Touschek lifetime and mitigation of emittance

growth due to the intra-beam scattering

HER: Lower emittance and lower SR power

Nano-Beam SuperKEKB

 8×10^{35}

Demands on the detector

Total cross section and trigger rates with $L = 8 \times 10^{35}$ cm⁻² s⁻¹ from various physics processes at Y(4S).

Physics process	Cross section (nb)	Rate (Hz)	
Y (4S) →BB	1.2	960	
Hadron production from continuum	2.8	2200	
μ+μ-	0.8	640	
τ+τ-	0.8	640	
Bhabha (θlab> 17°)	44	350 ^(a)	
γγ (θlab> 17°)	2.4	19 (a)	
2γ processes (θlab> 17°, pt > 0.1GeV/c)	~80	~ 15000	
Total	~130	~20000	

(a) rate is pre-scaled by a factor of 1/100

Beam-related backgrounds are 10-20 x KEKB.
Radiative Bhabha, Touschek scattering, 2-photon

Fake hits, pile up, radiation damage!!

The requirements for the trigger system are:

- 1. high efficiency for hadronic events;
- 2. maximum average trigger rate of 30 kHz;
- 3. fixed latency of about $5 \mu s$;
- 4. timing precision of less than 10 ns;
- 5. minimum two-event separation of 200 ns;
- 6. trigger configuration that is flexible and robust.

Belle II Detector

EM Calorimeter:

CsI(Tl), waveform sampling

electronics (barrel)

electrons (7GeV)

Central Drift Chamber Smaller cell size, long lever arm

Vertex Detector

2 layers Si Pixels (DEPFET) +

4 layers Si double sided strip

DSSD

KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

positrons (4GeV)

Particle Identification
Time-of-Propagation
counters (barrel)
Prox. focusing
Aerogel RICH
(forward)

SuperKEKB/Belle II Interaction Region

	Belle II	Belle
Beam Piper =	10mm	15mm
DEPFET		
Layer 1	r = 14mm	
Layer 2	r = 22mm	
DSSD		
Layer 3	r = 38mm	20mm
Layer 4	r = 80mm	43.5mm
Layer 5	r = 104mm	70 mm
Layer 6	r = 135mm	88mm

DEpleted P-channel FET

Tracking: PXD and Central Drift Chamber (CDC)

DEPFET pixel sensor

longer lever arm

Improved momentum resolution and dE/dx

$$\sigma_{P_t}/P_t = 0.19P_t \oplus 0.30/\beta$$

$$\sigma_{P_t}/P_t = 0.11P_t \oplus 0.30/\beta$$

PXD: excellent spatial granularity

(resolution $\sim 15 \mu m$)

low material $(0.16\% X_0)$ for layer 1)

but significant amount of background hits, huge data rate.

SVD: precise timing (2–3 ns RMS) but has ambiguities in space due to 1D strip.

Combining both yields a very powerful

	Belle	Belle II
inner most sense wire	r=88mm	r=168mm
outer most sense wire	r=863mm	r=1111.4mm
Number of layers	50	56
Total sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
sense wire	W(Φ30μm)	W(Φ30μm)
field wire	Al(Φ120μm)	Al(Φ120μm)

Particle Identification in Belle II

Barrel PID: Time of Propagation
Counter (iTOP)

MCP-PMT
Focus mirror
(sphere, r=7000)

Focusing mirror
Small expansion block
Hamamatsu MCP-PMT (measure t, x and y)

Cherenkov ring imaging with precise time measurement.

Device uses internal reflection of Cerenkov ring images from quartz like the BaBar DIRC

Cherenkov angle reconstruction from

16 Quartz radiators
2.6m^L x 45cm^W x 2cm^T
Excellent surface accuracy
MCP-PMT
Hamamatsu 16ch MCPPMTGood TTS (<35ps) &
enough lifetime
Multialkali photo-cathode

Aerogel RICH (endcap PID)

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices >> Cherenkov images from individual layers overlap on the photon detector.

6.6 $\sigma \pi/K$ at 4 GeV/c!

Hamamat

su HAPD

BELLE Electromagnetic Calorimeter

CsI(Tl) crystals

$$L_{cr} = 30 \text{ cm} = 16.2 X_0$$

Number of crystal: 8736
Total weight is ~43ton

- Calorimeter successfully worked for more than 10 years since 1999 to 2010
- All 8736 channels are operable
- It demonstrated high resolution and good performance.

Modification of the electronics.

- Pipe-line readout with waveform analysis:
- ❖ 16 points within the signal are fitted by the signal function F(t): $F(t) = H \cdot f(t-t_0)$
- ❖Both amplitude (H) and time (t_0) are obtained by the on-line shape fit.

The Geography of the International Belle II collaboration

Belle II now has grown to ~900 researchers from 26 countries

SuperKEKB and Belle II status and plans

Phase 1: Beam operation without final focus magnets and Belle II

Phase 2(ended on July 2018):

No final vertex detector but one ladder/layer with background sensors Achieved Luminosity of 5 10³³cm⁻²s⁻¹ recorded integrated luminosity of 500pb⁻¹

Phase 3: 2019 - detector with silicon vertex detector
05.06.2019 Photon 2019, Frascati, Italy

Vertical beam size (measured by the luminosity scans with diamond detectors (Phase 2)

3.5 SuperKEKB/Belle II 2018 (preliminary) 2.5 1.5 0.5 0.5 0.5/03 05/17 05/31 06/14 06/28 07/12 Date

IR Z size (Phase 2)

At Phase 2 peak luminosity of 5 x 10^{33} /cm²/sec⁻1 , the vertical spot is ~700nm high. There is still beam-beam blowup at high currents. At low currents, the vertical spot size is 330 nmhigh (the final goal is O(50nm) with full capability of the QCS system).

Current Luminosity status

 $L_{\text{max}} \approx 4.5 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

By now ~ 1.6 fb⁻¹

Plan – 5 fb⁻¹ by end of June

Phase 2 results - photons

Phase 2 results - tracking

$$K_S \rightarrow \pi^+\pi^-$$

Study of Two-Photon Physics at Belle II

Belle II Advantages For Two-photon processes:

- Much higher (integrated) luminosity (up to 50 x)
- Better momentum resolution and identification
- Improved trigger efficiency due to more sophisticated neutral trigger

Most interesting two-photon studies:

Transition form factors of $\pi 0$, η and η ' mesons via single and double tagged events. These are particularly important for light-by-light contribution to muon (g-2);

Study and search for charmonium and charmonium-like states in the two-photon collisions.

 $\gamma\gamma^* \rightarrow \pi^0$ Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon

$$|F(Q^2)|^2 = |F(Q^2,0)|^2 =$$

 $(ds/dQ^2)/(2A(Q^2))$
 $A(Q^2)$ is calculated by QED
 $|F(0,0)|^2 = 64\pi\Gamma\gamma\gamma/\{(4\pi\alpha)^2 m_R^3\}$

π^0 Transition Form Factor

The pion transition form factor for the "asymptotic" (solid line) and different models The experimental data are from BaBar (circles), Belle [(squares) and CLEO (open triangles).

TFF of the light pseudoscalar mesons

Transition form factors $\gamma^* \gamma \to \eta$ (left panels) and $\gamma^* \gamma \to \eta'$ (right panels) compared to the LCSR calculation (Phys. Rev., D90(7), 074019 (2014)).

New-Charmonium (or XYZ) production

Important task is a serch for and study above 3.6 GeV: $\eta c(2S)$, $\chi c2(2P)$, $\chi (3915)$ and $\chi (4350)$ (Discovered by Belle in B decays and two-photon processes) Now statistics is limited <~100 evt.

And search for exotic baryons in $\gamma\gamma \rightarrow pp$ K+K-

Conclusion

- •Last decade demonstrated the fruitfulness and efficiency of the flavor "factory" approach in the particle physics.
- •Huge amount of results was obtained at the B-factories, but many new questions appeared and the large field of researches will be opened by the super B factory.
- •High luminosity to be brought by SuperKEKB/Belle II will make various analyses possible for two-photon physics:
- •QCD test with exclusive processes at High-W, at High-Q2, with Single and Double tag ...
- •Charmonia/XYZ above 3.6 GeV