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@ An analytical expression of the asymptotic cross-section ( s = oo ), based on the 45 years old
Kessler group factorization formula, using a specific parametrization, obtained by Wilfrid da
Silva and |, and presented at Photon2007.

@ Try now to get an analytical description for s > 1GeV/?, with reasonable accuracy.
@ Start with a toy model keeping In x In terms.
@ Use exact expressions keeping InxIn terms.

@ Will try to conclude with QED and will not discuss consequences for the QCD a?a?2 and o
Born terms.



The ingredients

Factorization formula
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7dtdv172<7dw’2 = 781':32212 [(1 + chPO)orol + sh?0(oro) + oLo%) + ch?0o 0]

vv* — | I transverse and longitudinal cross-section
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where 8 = 1—%andch@:2w—1withw:W{W2+t)

Introducing x = and xp = and x/, x0 similarly

t
w2t m2+t
Kinematical boundaries

Given by xox} > xx' > L implying w = m > 1
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A toy model

Modulo a factor f(w) = (1 — = + 1), when w — oo it can be interpreted in terms of a central
exchanged photon probing the QED partonic content of the two real photons :

QED parton model

ales =242 [1(x, 1) +T(x, )] [F'(x', t) + T (x', 1)]
o I(x,1) = 2 {[x®+ (1 — x)2]12x + (1 — x)2(1 — th*x)x — 4x(1 — x)(1 — th®x)x
[ —8x(1 — x)Jthy — (1 — x)2(1 — thPx)thy}

@ and x(8) = 1In 1*/3 with 8 = /1 — 4Wl22

Keep only x(8)x(8’) terms, under the assumption of t < 4m?, W2 > 4m? and W' > 4m’?.

Toy model
W2yt _ X
o I(x,t) = 5~ ln4m2+t 5—In=2 introducing v = - and remembering w = xox0
I 8
e compute 22 = 8o f1 av¥ [ dwin & = ﬁ‘”st F(w)
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o with F(w) =w—1—Inw— }In? HIn®w = wG(w)

w—
© keeping f(w), we get Gy =1— 2= + 71, — 1 [1 Inw+ 22—+ HInw+ 2‘—4In4w]




Toy model results

Kinematics and notations
@ ty =4mm', sy = 4(m+ m')? and s; = 4(m — m')2.
_ _ —+ . _ S—5(
@ Thenforw =1, ty = tyet2¢ with th¢ = ,/S_S:’.

2
@ Or with u = th¢ we have w(t) = ;51_’51”“2 with1 <w < 2

_ 16a* W 2du 16a* U0 _ 2du ~ 16a* 1
o="% o 2 EWGW) = 22 SO7S1UZG(W), 2 —=1n

Approximate threshold function

a(s):a(oo> @WVS *LG(s/s0)
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Toy model results : vy — 4p and vy — 2u2e

vy — 2u2e
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Turning to the exact expressions : log*log term

We use now the exact expression of the argument of the log terms. The choice of good variables

makes the approach easier. With x(8) = 1 In 1“; we have to compute :

do 2a* ,
prwvie th x(B)x(8")

First we consider :

[ o [ oo

B0 sx

Changing variables, using u = xox we get :

;/1W ou / dwx(B)

where
Uu—w w—u
ﬁZ — and BIZ — ;
U— wxXy W — Ux;
Since
2
w 1— X . u—1
== 72 = = andnoting £% =
u 1— 32X Xo u— X

the integration by parts on w gives :

/1 dwx(B) = —x(B1) + \Fx(mf %)

(1)



Turning to the exact expressions : keeping the leading term

Considering now :

o[ @) [ S=xarvm) - Jx()

VX0
to a good approximation we put 8y = . Note that 3y is the 84 value for u = w.
82 = =1 angsimilarly g2 = ¥
Xo w — X}
Since
u_1-p2 X

w 1—6’2x_x7)

we get in a similar way as above :

[ dux(s = —x(e) + [x(ﬁof 0)

We keep the leading term :

X(Bov/R0)\/x5x(6/%)

which gives the correct expression when s — co

V(%) X/ %)

and goes to 0 at threshold.

(10)

(11)

(12)



Turning to the exact expressions : t integration with a trick

The last integration

= 2o [ & /Xox(Bov/%0)y X x(8 /%) J

Noting that :

w—1

and Xj = xg85 = (13)
X/
0

]
Wy

G0 ()G ()

The following parametrization

2 W~
Xo = X085 = W

which implies

sh®ng and x/ — ch®ng
sh2n 0™ ey

1 1 1 1
satisfies ( — —1)m2=m?| — —1] andimplies (— A )\mP=m? | — —1 16
1sfl (Xo ) Xé mpli Xo Xé ( )

which allows to write similarly :

Xo =

h2 h2
=30 ang X, = 1o
sh2qy ch?y



Turning to the exact expressions : relation between ¢ and n

Since (XLOA)=<%> (Xloq) and Wqué(p%) (%4) (18)

one can express é = 7 as a function of sh?y) using
Lf(1,t;> (’i,1):ﬂ (19)
4m? s t t sh2qp — sh2ng
Introducing o, = €%¢ and 7o_ = e—2¢ and remembering that ty = 4mn, sy = 4(m + m’)? and
s = 4(m— m')? with ch?(¢) = ¢ =1 and sh?(¢) = S =2 we get
s shmgchng .
(7 —70-) (104 —7) = % SPPw — s, leading to (20)
shngchng . Shzw - 3h2¢0
= ch(2¢) + sh(2 K =———— with K = 21
T = Oh(20) £ sh@OVK(Y) = gp e with K(w) = S5 —2 = (@1)
. S(So — 81)
h h2 (o) = sh? h(10)ch(no)C th C(s) ——_ "1 _ 22
where S1P (o) = $H(o) + shlm)oh(io) C(s) with C(s) o= 2 *Pes (22)
et = [VTF1CE) + Vi/r+Cls)| with em = /3=
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Turning to the exact expressions : the volume element

i ization wi — shmg [y _ oy g 1 shn—stPng
Using the n parametrization with \/xp = s \/ X0 = Ghn and - = Shigohg

at
lo %5 /%oy = 2 (23)

Since ¥y — n when s — oo we will use 2dv instead. Noting that we can write :

1+vX%  (1+ e~ (¥=m)) (1 — e~ (¥+m0))

= 24
1—/Xo (1 - e—(w—nu)) 1+ e—(w+no)) (24)
and
TH/X (14 e =m0)) (1 + e~(W+m0)) 5
1= fx (e ) (T —e i) (29)
Gluing everything we get :
b gt
O AN CNONERX AT
) (26)

1+ e—(¥—mo)
1 — e (¥—mo)

14+ e—(+mo)

_In2
LU e e

oo 1
2dy— |In?
Yo 4 {

|

11/16



Turning to the exact expressions : the integration variable

For an integration between 0 and 1 we just use y = e~ (¥—%0),

dy1 1 +ye*(w0*7lo) o1+ ye*(wOJrWO)
tO\/t 12 \/7X(50\/>)\/>X 50 / 2— |: 1— ye—('l/)o—no) - 1— ye—(1110+7]o)
(27)
. _ [T ety ] el tye®
With  P(thn) _/0 " l:l " 7y’ —1In e where (28)
2 1+u . . . .
P(u) =In“uln e 2Inu[Lig(u) — Lig(—u)] + 2 [Lig(u) — Lig(—u)] = Az(u) — Az(—u)
(29)

b dt , 1 -
weget t [ G VR(AvED) gy 3g) = 5 [ PATET) — Pn ™) (a0)

when s — oo we recover P(thng) inside the brackets.
So the corresponding form factor is :
P(thwo;rﬂo )y — P(th%;"o )

31
P(thno) ey
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Turning to the exact expressions : the jacobian at low y

With the help of the following change of variables y = e~ (¥—%0) and z = e~ ("—0) we have :

22(1 — e—4m)
(1 —22)(1 — z2e—%m)

(32)
K(4) = (1= y®)(1 — y2e~*¥0)
[1- y2e—2(¢0+710)][1 — yze—z(ﬂio—ﬁo)]
And at low y, the jacobian behaves like :
dz2  dy? a3
22 T @42 (33)
we get for large s
2
2~ @ (34)
and near threshold when s — s
2~ | o (35)
S$— 95

This explicit form of the jacobian explains the previous approximation in the large s limit.
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Turning to the exact expressions : modified Kummer function

Before gluing everything for a comparison with the exact expression, we just have now to compute
an integral of the following type :

J1+yb| o e 1—iab 1-b
th 0 = d u=-—2 (36
/ ya2+y24 1—yb‘ with e =1 @9 V=15 9
1 . :
We get  P(6,u) = Ag(u) — [Ag( ue'®) + A3(—ue_’9)] (37)
and define  Lin(re’) + Lin(re=") = 2Lin(r, 0) (38)
vy — 4p ¥y — 2e2u
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Discussion

We have already got an approximate expression corresponding to the %5\/70)((,80\/%) piece,
which might be sufficient for a reasonable limited accuracy.
Integrating the full /(x, t) expression leads to :

—x(3+ Bg) + x5(3 — 4588 + 367)
i =) xR @9
K v ) X(ovre) & (1 — Fx0)?
When 3¢ = 1, we get as expected :
1
5vXo — —— 4
31+ (5v - 2 ) xvm) (40)
which was used to obtain the asymptotic cross section which can be written as :
404 25 19 / 1 2
o="———3|—+—=|7——1th P(th: Q(th 41
Toe = G {[4 +33 (e no)] (thno) + O 770)} @)

with
Q(u):% [2 (%fu) Inu— <%+u) <1+In2u>} (42)
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Discussion

25a* P(thng)

Keeping onl = 43
ping only o0 = o s e (43)
; ot 2 4 2 2 44
For small thny we obtain i (In thng — 2In thnf + 4) (44)
28a* 103 485
Instead of In? thn2 — —= Inthn? + — 45
nstead o o (n Mo — 57 In me + 3 (45)
For equal masses, once divided by 2, obtain :
7044 175 (3) instead of—o‘4 175g‘(3) 19 (46)
op = —— an ~ Ta
07 Tm? 36 Tm? \ 36 18
The expression to be tested against the numerical integration is then :
P(th¥etmy _ p(th¥Po—m0 P(O 7”.,w(ﬁrno — P(O_, th¥o—"0
(th=g™) — Pth ™5 )aoo or better (0 z )M 2 )aoo (47)

P(thno) P(thno)
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