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Relativistic Mechanics

Let us consider a particle moving with velocity v in an inertial frame §S.
The time dt in & and the time d7 in a reference frame moving with the
particle are connected by

2 di
dr = |1 — —dt = —
2y

The quantity d7 is called proper time.
The proper velocity u is thus defined as

dr 1 dr

dr 1_Z_§dt

u 2AY%

Note that dr refers to the frame S, but the proper velocity u differs
from the usual definition of velocity, v = dr/dt, by a factor ~



Proper time and velocity

What is the rationale behind the introduction of these quantities?

e The proper time d7 is invariant (or scalar), by construction

. . dxt
e One may define a four-vector: the four-velocity u* = o where:
T
o daY dt c
Uu = — =Cc— = — C
dt dt 2 !
==

u = (7yc,yv) transforms according to Lorentz rules, by construction:
it is a four-vector, divided by an invariant

Note that dx*/dt follows transformation laws that are actually more complex than
those for the proper velocity dx* /dr!



Relativistic momentum

In Classical Mechanics one defines the momentum p:

dp _

=F
dt

p = myv,

What is the equivalent of p in Relativistic Mechanics? A good candidate

for the space part is
mv

g

Both Newton's second law and the conservation of momentum are still
valid if we use the relativistic expression for the four-vector momentum

p:mu:

(note that m is an invariant)



Energy-momentum four-vector

p is the space part of a four-vector: what is p°?

0 0 mc i)
DT =mu = =

J1-% €

where E = ymc? plays the role of relativistic energy. If v = 0, we
obtain the famous Einstein’s formula for the energy of a particle at rest:

Ey = mc?

What is the relation between relativistic energy and classical kinetic

energy’?

1 3 ot
E—E02§mv2+§m2—2+..., %<< 1

For an isolated system the energy-momentum four-vector p* is conserved



Energy-momentum four-vector (2)

The square module of the energy-momentum four-vector is of course a
Lorentz invariant and is related to the mass of the particle via:

pupt=—(p")+p-p=-mc

alternatively: E? — p2c? = m?c?, from which one obtains E(p):

E = /m2c* 4 p2c2 = c\/m2c2 + p?

2

Classical case: p << mc and E(p) =~ me? -+ 2]';
m

Ultrarelativistic case: p >> mc and E(p) ~ pc

The latter expression is exactly true, E(p) = pc, in the case of massless
(m = 0) particles traveling at the speed of light: the photons.



Units for high-energy physics

In relativistic physics, it is convenient to express masses as energy/c?

and momenta as energy/c

Energies are typically in units of

electronvolts, eV, or multiples of eV: 4|

1 eV = energy acquired by an electron
crossing a 1 V potential difference

1 Volt

1eV = (1.602x 10712 C) (1 V) =1.602x 1071 J

Typical multiples used in particle physics:

1 MeV = 10 eV, 1 GeV = 10% eV, 1 TeV = 1012 eV

Mass of an electron in energy units: 0.511 MeV/c?
Mass of a proton: 938.2 MeV/c?; of a neutron: 939.5 MeV/c?



Units for high-energy physics (2)

Using GeV for energies and 1 fm=10"'" m (approximately the size of a
proton) for lengths:

Quantity | SI Units HEP Units

Length 1071° m 1 fm

Energy 1.602 x 10719 J 1 GeV

Mass 1.78 x 10727 Kg | 1 GeV/c?

h 1.055 x 1073% J:s | 6.59 x 1072> GeV's
c 2.998 x 10° m/s | 2.998 x 10%° fm/s
he 3.162 x 1072 J-m | 0.1975 GeV-fm

One often sets ¢ = 1 so masses and momenta are also measured in GeV.

62

1

Since — = o ~ ——, fine structure constant, e? = ahc = 1.44 MeV-fm
hc 137



Relativistic kinematics: summary

The energy-momentum four-vector p* for a particle of mass m moving
with velocity v is

E 1 v
M = | — — \myc, m-wyv ) — 9 —
with Lorentz invariant norm p#p, = —pé + |p|* = —m?c*.

For a photon of wave vector k and frequency v = w/27 (w = ck):

P = (2.p) = (2, k) = (k, Bk

C

with Lorentz invariant norm p#p, = 0.



Time Dilatation in action (2)

A typical energy of a muon produced in the
high atmosphere is £ ~ 50 GeV. lts mass is
m,, = 106 MeV, so v = E/mc* ~ 500, 8 ~ 1.

The half life of a muon is 7p = 2.2 x 1075 s in
Its reference frame.

In our reference frame: 7 = vy >~ 1.1 ms.
In this time, the muon travels a distance:
s~crt = (1.1 x1077s)(3 x 10°m/s)=330 km




Relativistic kinematics: collisions

During a collision process, the sum of energy-momentum four-vectors
of all particles P* =" pl'" is conserved.

A simple example: a photon hitting an
electron at rest (Compton scattering).

hk + mc hk'+ E/c
hk = hk'+p

One derives p = Ii(k — k') and F = Ii(k — k’)c + mc?. Using E? =
m?c* + p*c?, one finds hkk'(1 — cos0) = mc(k — k'). In terms of the
2T L 1 mc

wavelength \ = .+ one can write YN 7(1 — cos 0)

In this case, the nature of the particles does not change in the collision



Relativistic kinematics: collisions (2)

A more general case: a neutrino hits an
electron and produces a muon 2 % -
/ P

V(k) +elp) > vlke) +102)

*
2

In the following, we use units in which A = 1 and ¢ = 1 and the sign
convention p* = pj—p* = —p,p* for square module of four-vectors

ki = (w;, k;) with w? — k? = €2 (very small!)
p1 = (E1,p1) with Ef — pf = m?; pp = (E2, p2) with E5 — p5 = m.,
(mass of the muon). In the laboratory (LAB) reference frame:

w1+ E1 = wo+ By
+p1 = ko+po



Relativistic kinematics: collisions (3)

A’_rz* L] —
. 7 P

In the Center of Mass (CM) reference frame:

{wf+E;< ws + B

k!
k k - *k >k
1 TP1 = Ko+ Py /

P>

The norm is conserved and is a Lorentz invariant:
s=(k1+p1)° = (wi+ E7)° = (ki +pj)° — Vs=uwi + E7

because ki + p1 = 0 (we are in the CM). /s is the maximum energy
that can be transformed into mass: s = (w2 + E2)* > m?.
In general, the sum over masses in the final state, Zf my < VS

M = /s is also called the effective or invariant mass of a process.



Fixed target vs colliding targets

v(k,)
Assuming that the target is fixed: V) . /
m\)

I(p,)

s = (ki+p)’=ki+pi 42k -pr=€+m’+2wFE —2ki - py

— €4+ m?+ 2w1m

e ~ 0 and at high energies, m is also negligible: | \/s >~ \/2wim

The production of a muon (mass: m, = 106 MeV) is possible if

mg, —m? 11200 — 0.26

MeV ~ 11GeV
m 1.02 © Ge

e2+m+2wym > mi — Wy >



Fixed target vs colliding targets (2)
Let us assume now a head-to-head collision as in the picture below.

k k,

k1= (w1 = \/k% + m?, k), ko = (w2 = \/kg + m3, ko)

s = (k1+k)? = (w1 +w2)? — (ki + ka)? = (0} + wn)?

because ki + ko = 0. At high energies | /s = w1 + wo ~ 2|kq|

Pairs of muons can be produced from an

electron and a positron if /
k,m S k,m

2|k1‘ > Qmu — |k1‘ ~ My, = 106MeV /
u

Note the difference wrt the previous case!



Decay of a particle into two particles

An unstable particle decays into two . =(&.5) M p,=(E,.p,)
particles. In the CM: < >

0 = p1+ P2, p = |p1| = |p2|
M = E1+E2:\/m%+p2+\/m§+p2, M > my 4+ ms

From E; = \/m? + p? one finds p> = E? —m? and Ex = M — E; =
\/m3 —m?2 + E?. After some algebra, one finds

E:M2—|—m%—m% E:MQ—I—m%—m%
1 N ’ 2 I ’
_ VM — (mg —me)?) (M2 — (m1 + me)?)

b IM

m72T + m?
Example: 7= — pu~ +v,, m; = 140 MeV, E,, ~ 5 E ~ 110 MeV
Lz




Decay of a particle into two particles (2)

. . R = (EI'J f;j]}",pl:)
As before, in the laboratory frame, with  rP=(£,00,p)
. Pr
particle momentum along z:

E =(E,, Dor P3.)

P = Pirt+ D2

0 = pir+Pp2r
E = Ei+ Es

lLet us use Lorentz transforms between LAB and CM. Note that:

y=E/M; 3=+/v*—1/y=p/E

By =~ (ESM 1 gp¢M) Ey =~ (BES™ + BpSM)
p1z = (pSM + BECM) pa. = (p5" + BES™M)
C M, CM

PiT = P17 5 P21 = Por



Observables: cross sections, decay rates

e For scattering processes, the relevant quantity to be measured in
experiments Is the cross section o. The cross section has the units
of a surface (m?, or cm?; also used in high-energy physics, the barn,
10~%® m?, or 100 fm?)

e For decay processes, the relevant quantity to be measured in
experiments is the decay rate A\. The decay rate has the units
of an inverse of a time

Both quantities are related to the probability that the considered process
occurs



Cross-section
A

J = beam flux T

h

Il = target particle d
density

Definition of the (total) cross section: the number of scattering events
during time dt is dN = o(JAnd)dt, where J is the number of incident
particles per unit time per unit surface, A, n, d as in the picture.

The quantity L = JAnd is known as the luminosity (units: [¢]72[t]™1).



Decay time and Lifetime

ANO
NU
1
1 —t/t
P(f)dt =—e™"'" dt
12 Rt,, =0.693 7 T
1/e 4
t

If the decay rate is A, there are dN = N (t)Adt particle that decay in
time dt. This leads to the N(t) = Noe ! law.

We define 7 = A\~! as the mean life. T refers to the reference frame
where the particle is at rest, that is, to the proper time of the particle!
See the discussion about muons and cosmic rays.

For a particle with speed v = B¢, 7/ = 437 in the LAB reference frame



Mean life and decay width

If a particle has a finite lifetime with mean life 7, i.e. it decays with

h
probability 1/7, we can define the decay widthT" as|I' = — |.
T

The decay width has the dimension of an energy (7 = energy x time).
In high-energy units, & = 6.58 - 1072% MeV s.

Strongly decaying particles have short lifetimes and hence large decay
widths, e.g. the p(770) has 7 =4.4-10—24 s and I' = 151 MeV.

Weakly decaying particles have long lifetimes and small decay widths,
e.g. the K° meson has 7=0.9-10" sand I' = 7.3 - 10~ !* MeV



Mean life and decay width (2)

The decay width is a purely quantum phenomenon that can be
interpreted as a manifestation of the indeterminacy principle AEAt > h.
It appears as a finite width in experiments as a function of energy:

/4
(E-E,)*+I?/4

E Lorentzian line
>

Eo

with a typical Lorentzian form (FWHM=Full Width at Half Maximum).
If there are more possible decay processes with decay widths I'; and

relative probability B,(¢) such that > . B,(¢) =1, then | ' =) T




Invariant mass

Let us consider the decay of a particle into three (or any number)

EB31
s Spectrometer
Beam

A ser_ie§ o_f de.tectors nnnnn P, ( E. Pl)
can distinguish different 2 (E )
particles, measure F and 2= 2, P2
p of all particles P3 = (E37 pg)

Let us build the quantity s = (E1 + Ey + E3)? — (p1 +p2 + p3)?. This
is a Lorentz invariant, that in the rest frame of the decaying particle can
be easily evaluated: s = M?, the invariant mass. Then one searches for
peaks in histograms of invariant mass.

Example: decay of a pion into two photons, 7 — ~4~. Invariant mass:
M2 = (Plfy -+ P27)2 — P12’y + P22’Y —+ 2P1’YP2’Y = 2E1E2(1 — COS (912)



Example: Data from NOMAD experiment at CERN
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for all possible photon pairs

m, =2EF (1-cosd,)



