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• Introduction to Einstein’s special relativity

• Consequences: relativity of simultaneity, time and space dilatation

• Space-time and Lorentz transforms

• Four-vectors formalism



Why Special Relativity

Why do we need special relativity to describe the behavior of elementary

particles in accelerators?

• Because elementary particles typically have large kinetic energies and

speeds, often approaching c, the speed of light. In such regime,

classical mechanics no longer applies.

• Because reactions leading to creation or destruction of particles may

occur. The rest energy, proportional to the mass of the particles,

must be taken into account in the global balance of energies.

Einstein’s special relativity is the theory that properly describe the

kinematics and energetics of elementary particles in accelerators.



Einstein’s Relativity Principle

Special relativity is based upon Einstein’s Relativity Principle:

• The laws of physics are valid in all inertial reference frames, and

• The speed of light in vacuum is the same in all inertial reference

frames, independently upon the speed of the source

Such principle is not compatible with Galilean transforms (valid only as

limit case for speeds v << c), and with Newton’s idea of absolute time.

We need to introduce Lorentz transforms and the concept of space-time.



Reminder: Galilean Transforms

Transformation rules between an inertial system S (described by

x, y, z, t) and another one, S ′, (described by x′, y′, z′, t′) traveling

with speed V along x with respect to S:


x′ = x− V t
y′ = y

z′ = z

t′ = t

(origins are assumed to coincide at t = 0). The velocity addition rules

follows: a particle with velocity v in S has velocity v′ = v −V in S ′

The inverse transform from S ′ to S is obtained reversing the sign of V .



Consequences of Relativity Principle

Einstein’s Relativity Principle has rather surprising consequences, that

can be demonstrated on the basis of simple gedankenexperimente

(“though experiments”):

• Relativity of simultaneity: Two events that are simultaneous

(happen at the same time) in an inertial system may not be

simultaneous in another inertial system

In the reference frame of the moving observer, the ray of light hits

simultaneously the two walls; in the laboratory (observer at rest)

reference frame, this does not happen.



Consequences of Relativity Principle (2)

• Time Dilatation: A moving clock runs slower

Let us consider a ray of light that hits the floor. This happen after

∆t′ = h/c in the reference frame of the moving observer, in ∆t =√
h2 + (V∆t)2/c in the reference frame for the fixed observer. Thus:

∆t′ =
√

1− V 2/c2∆t ≡ γ−1∆t < ∆t

where we have introduced the factor γ = 1/
√

1− V 2/c2.



Time Dilatation in action: cosmic rays

Muons (µ+, µ−): components of cosmic rays,

generated by heavier particles (mesons) in the

high atmosphere (∼ 15 Km)

Muons’ energy is such that v ∼ c. The half

life of a muon is τ0 = 2.2µs. During such

time, a muon with speed c travels a distance:

s = cτ0 = 2.2× 10−6s·3× 108m/s = 660m.

The flux of muons is however easily measurable

at ground level. How is that possible?

The half life of muons refers to the reference frame of the muon (that

is: moving with it). In a laboratory reference frame (fixed on the Earth):

τ = τ0/
√

1− v2/c2 >> τ0!



Consequences of Relativity Principle (3)

• Length contraction: A moving object becomes shorter

(only in the direction of velocity)

A light ray is reflected by the wall in a time ∆t′ = 2∆x′/c for

the moving observer, ∆t = ∆t1 + ∆t2, where ∆t1 = (∆x + v∆t1)/c,

∆t2 = (∆x−v∆t2)/c, for the fixed observer. One finds ∆t = 2γ2∆x/c.

Finally, since ∆t = γ∆t′:

∆x′ = γ∆x =
1√

1− V 2/c2
∆x



Lorentz Transforms

Transformation rules between an inertial system S (described by

x, y, z, t) and a S ′ one (described by x′, y′, z′, t′) traveling with speed

V along x with respect to S:


x′ = γ(x− V t)
y′ = y

z′ = z

t′ = γ(t− V
c2
x)

(origins are assumed to coincide at t = 0)

In the limit γ = 1, V/c << 1, we recover Galilean transforms. The

inverse transform from S ′ to S is obtained by reversing the sign of V .



Velocity addition rules

Let us assume that a particle travels in S for a distance dx in a time

dt: vx = dx/dt. In S ′ it travels for a a distance dx′ = γ(dx− V dt) in

a time dt′ = γ
(
dt− (V/c2)dx

)
. It follows that:

v′x =
dx′

dt′
=

γ(dx− V dt)
γ (dt− (V/c2)dx)

=
vx − V

1− vxV/c2

The is Einstein’s velocity addition rule. In the limit V/c << 1, it

reduces to the usual (Galilean) rule: v′x = vx − V . If vx = c, also

v′x = c. In no case can one exceed the speed of light c.

Einstein’s second Relativity Principle can actually be reformulated as

follows:

• For all inertial reference frames, there is a finite limit speed c for

physical objects



The concept of Space-Time

• Let us define an event as a point in the space (x, y, z) at time t (in

a given inertial reference frame)

• Let us represent an event as a vector in a four-dimensional space:

a four-vector. It is convenient to use (ct, x, y, z) as dimensionally

consistent coordinates

• A moving particle describes a line in the space-time, called world line

• Light rays passing through origin at t = 0 define a surface called light

cone.



Light cone

In the figure, a typical example of a

light cone, projected over two space

coordinates and with the time axis in the

vertical direction (Minkowski diagram)

The world line of a physical object always

stays “inside” the cone; at time t = 0 it

goes from the “cone of the past” (below)

to the “cone of the future” (above); the

tangent to the curve in any point is always

“inside” the cone (because the speed v <

c). This is called a “time-like” world line.



Lorentz transforms in space-time

• Lorentz transforms are generalized

rotations in space-time, that

modify the relative directions of

the axis, expand or contract them.

• Contrary to usual rotations, they do not leave the usual square module

of vectors: x2 + y2 + z2 + (ct)2, unchanged. The invariant quantity

is I = x2 + y2 + z2 − (ct)2: the square module of four-vectors

• Lorentz transforms move a point over the set of points with constant

I: an hyperbole in t and x, a rotation hyperboloid in t, x, y, with

asymptotes on the light cone.



Events in space-time

• Let us consider two events in space-time:

x1 = (ct1, x1, y1, z1), x2 = (ct2, x2, y2, z2)

and their four-vector difference (interval): ∆x = x1−x2. Depending

upon the value of I = (∆x)2 + (∆y)2 + (∆z)2 − (c∆t)2, we can

distinguish the interval into

– Type space: I > 0. The two events may be simultaneous in some

reference frame

– Type light: I = 0. The two events are “connected” by a ray of

light

– Type time: I < 0. The two events cannot be simultaneous in any

reference frame



Four-vector formalism

Let us introduce notations: x0 = ct, x1 = x, x2 = y, x3 = z
(x0)′ = γ(x0 − βx1)
(x1)′ = γ(x1 − βx0)
(x2)′ = x2

(x3)′ = x3

where β = V/c. Lorentz transforms in matrix form:
(x0)′

(x1)′

(x2)′

(x3)′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3


In general, a four-vector is an object whose components follow Lorentz

transforms



Four-vector formalism (2)

Alternatively, Lorentz transforms may be written as:

(xi)′ =

3∑
j=0

Λi
jx

j, i = 0÷ 3

where Λi
j is the matrix earlier defined (the reason for “high” and “low”

indices will be clarified soon; note that the matrix has unit determinant)

It is easily verified that such transform conserves the square module I

of four-vectors:

I = (x1)
2

+ (x2)
2

+ (x3)
2 − (x0)

2

and in general, the four-vector analogue of the scalar product:

x · y ≡ x1y1 + x2y2 + x3y3 − x0y0



Covariant and contravariant indices

It is practical to introduce covariant components:

x0 = −ct, x1 = x, x2 = y, x3 = z

in addition to those (known as contravariant) already introduced. The

only difference is in the sign of the time component. The square module

and scalar product of four-vectors become:

I =

3∑
i=0

xix
i, x · y =

3∑
i=0

xiy
i =

3∑
i=0

xiyi

The Einstein convention is used: repeated indices are understood to

be summed. In all physical quantities, covariant indices are summed

with contravariant indices. This guarantees both the correct form and

the correct invariance properties with respect to a change of reference

frame.


