Giancarlo Panizzo INFN di Trieste Gruppo collegato di Udine

Quantum Mechanics

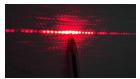
欢迎你们来到乌迪内大学

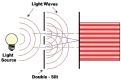
Summer School on Particle Physics

Introduction

In late XIX century, classical mechanics proved to be unable to explain some well known phenomena:

"On the theory of the Energy distribution law of the Normal Spectrum" 1900. Max Planck


This was the start of a big revolution in Physics, i.e. of Quantum Mechanics.



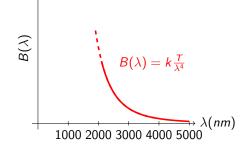
Light behaves as a wave ...

Black Body Spectrum

< 1900 K: Candle light 2700–3300 K: Warm white 2200–3400 K: Incandescent light bulbs 3900 K: Fluorescent lamps 4000–5000 K: Neutral white 5100–5400 K: Midday sun in summer 6500 K: Standard light C (xenon test lamp) 5000–6800 K: Daylight white 9 9000 K: Midday blue sky in December

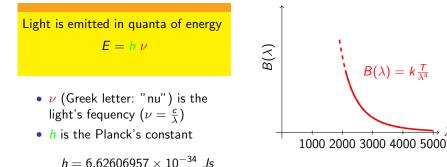
$$B \stackrel{?}{\longleftrightarrow} T$$

$$B = \begin{pmatrix} \text{Output power/unit wavelenght} \\ \approx \text{Intensity spectrum} \end{pmatrix}$$
$$T = \text{Temperature}$$

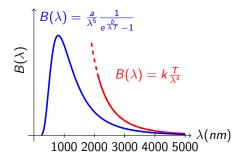


Assuming light is a wave, classical mechanics predicts:

$$B(\lambda) = rac{2ck_BT}{\lambda^4} \propto rac{T}{\lambda^4}$$


 $``Ultra-violet\ catastrophe"$

 $\mapsto \lambda(nm)$

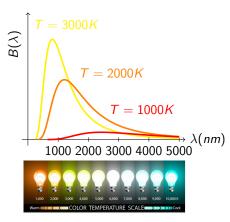

Light is emitted in quanta of energy

 $E = h \nu$

Predicted spectrum becomes:

$$B(\lambda) = rac{2hc^2}{\lambda^5} rac{1}{e^{rac{hc}{\lambda k_B T}} - 1}$$

- Same behaviour at high λ
- Dumping factor
 - heals $\lambda \to 0$

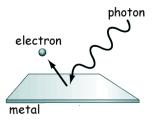

Light is emitted in quanta of energy

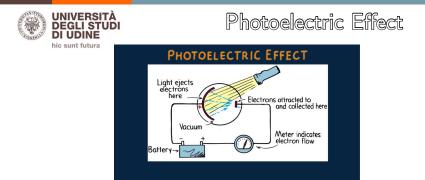
 $E = h \nu$

Predicted spectrum becomes:

$$B(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

- Same behaviour at high λ
- Dumping factor
 - heals $\lambda
 ightarrow 0$
 - agrees with observations

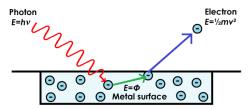




- Plank's proposed $E = h\nu$ as a *mathematical* assumption
- Einstein even further: light *is composed* by quanta, later called "photons"

• Photoelectric effect, Nobel Prize 1921

- Shining ultraviolet light on the metal plate
 - gives flow of negative charge (Hertz, 1887)



- Brightness \propto current, but ...
- Flow can be stopped with a specific voltage V_0
 - independent of the brightness
 - depends only on the frequency (Lenard, 1902)

Photoelectric Effect

- Light is actually **made up** out of particles "photons" *(Einstein, 1905)*
 - of energy $E = h\nu$
- Kinetic energy of the emitted electrons is the energy left over after the electron has been "lifted" over the work function barrier

Wave or particle?

So we have seen that light behaves

- as a wave (interference, diffraction ...)
- and **also** is made of **particles** (photoelectric effect, black body radiation, ...)

"Wave-particle duality"

...not yet the end of the story!

Atom structure

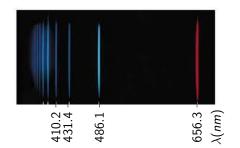
early 20th century

Rutherford, 1911, atom seen as

- diffuse cloud of e⁻
- dense positively charges nucleus

How can be an atom stable?

- Electrons on circular (accelerated!) orbit
 - Radiates photons (Larmor formula)
- loose energy. Catastrophe!



Failure of Classical Physics

Bohr

Hot hydrogen emits light in a set of spectral lines ("Balmer series")

 \Rightarrow set of lines in the visible spectrum

Solution (Bohr, 1913)

 \Rightarrow Electron's angular momentum L quantized in units of $\hbar = \frac{h}{2\pi}$

Bohr's radius

in one slide!

So if we start from the classical relation for electron's motion:

$$F_{em}=m_e a, \quad \left(a=rac{v^2}{r}
ight)$$

(circular orbit), and remembering Coulomb's law

$$F_{em} = k_C \frac{Ze^2}{r^2}$$

we get

$$F_{em}=k_Crac{Ze^2}{r^2}=m_erac{v^2}{r}=m_ea$$

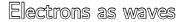
And finally using Bohr's assumption $L = m_e vr = n\hbar$:

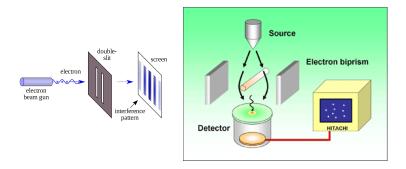
Quantized Bohr's radii
$$r_n = \frac{n^2 \hbar^2}{Z k_C e^2 m_e}$$

Put together:

() Photons are quanta of light, with $E = pc = h\nu = \frac{hc}{\lambda}$

⇒ light has also a particle behaviour


2 Electrons have quantized angular momenta $L = n\hbar$


But then also $\ensuremath{\textit{particles}}$ can behave as waves: " $\ensuremath{\textit{matter-waves}}$ " with wavelength

De Broglie wavelength		
λ	<u> </u>	<u>h</u>
	p	тv

Davisson and Germer **measured** $\lambda_e = \frac{h}{m_e v}$ using diffraction.

Wave function

Wave-like nature of light/particles described by

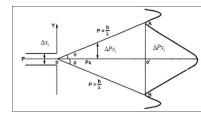
$$\psi(t, \mathbf{x}) \neq \psi^*(t, \mathbf{x})$$

Probability:

$$P\propto |\psi(t,{f x})|^2$$
, $\int dx \; dt \; |\psi(t,{f x})|^2=1$

Uncertainty principle Heisenberg

Only one of the "position" or "momentum" can be measured accurately at a single moment within the instrumental limit.


..or

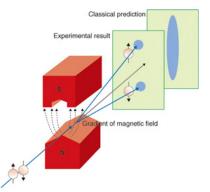
It is impossible to measure both the position and momentum simultaneously with unlimited accuracy.

 $\Delta x \rightarrow$ uncertainty in position $\Delta p_x \rightarrow$ uncertainty in momentum

then

$$\Delta x \ \Delta p_x \geq rac{\hbar}{2} \qquad \left(\hbar = rac{h}{2\pi}\right)$$

The product $\Delta x \ \Delta p_x$ of an object is greater than or equal to 2


(equivalent to state that interference is intrinsic)

Stern & Gerlach, 1922:

- Electrons are deviated by a magnetic field, in different directions
- Two "types" of electrons \Leftrightarrow **spin** $s = \pm \frac{1}{2}$

- Fermions: half-integer spin (electrons, ...)
- Bosons: integer spin (photons, ...)

Scalars have zero spin (Higgs)

Wave-particles wave function governed by

$$i\hbarrac{\partial}{\partial t}\psi(t,{f x})=\hat{H}\psi(t,{f x})$$

where \hat{H} is the "Hamiltonian" (E+V) and

$$\vec{p} \quad \rightarrow -i\hbar \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) = -i\hbar \vec{\nabla}$$

$$E \qquad \rightarrow i\hbar \frac{\partial}{\partial t}$$

Example of a free particle possible solution (1D):

$$\hat{H} = \frac{p^2}{2m} \psi(t, x) = \exp\left(\frac{i}{\hbar}\left(px - \frac{p^2}{2m}t\right)\right)$$

(verify as an exercise)