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IntroductionIntroduction

In late XIX century, classical mechanics proved to be unable to explain
some well known phenomena:

1 Black body radiation

2 Stability of the atom

3 Spectral series of Hydrogen

“On the theory of the Energy distribution law of the Normal
Spectrum”

1900, Max Planck

This was the start of a big revolution in Physics, i.e. of Quantum
Mechanics.
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Black Body SpectrumBlack Body Spectrum

Light behaves as a wave ...

... but ...... but ...
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Black Body SpectrumBlack Body Spectrum

B
?←→ T

B =
(
Output power/unit wavelenght

≈ Intensity spectrum

)
T = Temperature

3 / 19



Black Body SpectrumBlack Body Spectrum

Assuming light is a wave, classical
mechanics predicts:

B(λ) =
2ckBT

λ4
∝

T

λ4

“Ultra-violet catastrophe”
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Planck’s proposalPlanck’s proposal

Light is emitted in quanta of energy

E = h ν

• ν (Greek letter: ”nu”) is the
light’s fequency (ν = c

λ )

• h is the Planck’s constant

h = 6.62606957× 10−34 Js
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Planck’s proposalPlanck’s proposal

Light is emitted in quanta of energy

E = h ν

Predicted spectrum becomes:

B(λ) =
2hc2

λ5
1

e
hc

λkBT − 1

• Same behaviour at high λ

• Dumping factor
• heals λ→ 0

• agrees with observations

λ(nm)

B
(λ

)
1000 2000 3000 4000 5000

B(λ) = k T
λ4

B(λ) = a
λ5

1

e
b

λT −1

6 / 19



Planck’s proposalPlanck’s proposal

Light is emitted in quanta of energy

E = h ν

Predicted spectrum becomes:
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2hc2
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Plank & EinsteinPlank & Einstein

• Plank’s proposed E = hν as a mathematical assumption

• Einstein even further: light is composed by quanta, later called
“photons”

• Photoelectric effect, Nobel Prize 1921
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Photoelectric EffectPhotoelectric Effect

• Shining ultraviolet light on the metal plate

• gives flow of negative charge (Hertz, 1887)

• Brightness ∝ current, but ...

• Flow can be stopped with a specific voltage V0

• independent of the brightness
• depends only on the frequency (Lenard, 1902)
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Photoelectric EffectPhotoelectric Effect

• Light is actually made up out of particles “photons” (Einstein,
1905)

• of energy E = hν

• Kinetic energy of the emitted electrons is the energy left over after
the electron has been “lifted” over the work function barrier
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Wave or particle?Wave or particle?

So we have seen that light behaves

• as a wave (interference, diffraction ...)

• and also is made of particles
(photoelectric effect, black body
radiation, ...)

“Wave-particle duality”

...not yet the end of the story!
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Atom structureAtom structure
early 20th centuryearly 20th century

Rutherford, 1911, atom seen as

• diffuse cloud of e−

• dense positively charges nucleus

How can be an atom stable?

• Electrons on circular (accelerated!)
orbit

• Radiates photons (Larmor formula)

• loose energy. Catastrophe!
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Atom structureAtom structure
BohrBohr
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Hot hydrogen emits light in a set of spectral lines (“Balmer series”)

⇒ set of lines in the visible spectrum

Solution (Bohr, 1913)

⇒ Electron’s angular momentum L quantized in units of ~ = h
2π
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Bohr’s radiusBohr’s radius
in one slide!in one slide!

So if we start from the classical relation for electron’s motion:

Fem = mea,

(
a =

v2

r

)
(circular orbit), and remembering Coulomb’s law

Fem = kC
Ze2

r2

we get

Fem = kC
Ze2

r2
= me

v2

r
= mea

And finally using Bohr’s assumption L = mevr = n~:

Quantized Bohr’s radii

rn = n2~2

ZkC e2me
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De Broglie, 1924De Broglie, 1924

Put together:

1 Photons are quanta of light, with E = pc = hν = hc
λ

⇒ light has also a particle behaviour

2 Electrons have quantized angular momenta L = n~
But then also particles can behave as waves: “matter-waves” with
wavelength

De Broglie wavelength

λ = h
p = h

mv

Davisson and Germer measured λe = h
mev

using diffraction.
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Electrons as wavesElectrons as waves
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Wave functionWave function

Wave-like nature of light/particles described by

ψ(t, x) 6= ψ∗(t, x)
Probability:

P ∝ |ψ(t, x)|2 , ∫ dx dt |ψ(t, x)|2 = 1
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Uncertainty principleUncertainty principle
HeisenbergHeisenberg

Only one of the “position” or “momentum” can be measured accurately
at a single moment within the instrumental limit.
..or

It is impossible to measure both the position and momentum
simultaneously with unlimited accuracy.

∆x → uncertainty in position

∆px → uncertainty in momentum

then

∆x ∆px ≥
~
2

(
~ =

h

2π

)
The product ∆x ∆px of an object is greater than or equal to 2

(equivalent to state that interference is intrinsic )
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SpinSpin

Stern & Gerlach, 1922:

• Electrons are deviated by a
magnetic field, in different
directions

• Two “types” of electrons ⇔
spin s = ± 1

2

• Fermions: half-integer spin (electrons, ...)

• Bosons: integer spin (photons, ...)

Scalars have zero spin (Higgs)
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Schroedinger equationSchroedinger equation

Wave-particles wave function governed by

i~
∂

∂t
ψ(t, x) = Ĥψ(t, x)

where Ĥ is the “Hamiltonian” (E + V ) and

~p → −ı~
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
= −ı~~∇

E → ı~ ∂
∂t

Example of a free particle possible solution (1D):

Ĥ = p2

2m

ψ(t, x) = exp
(
ı
~

(
px − p2

2m t
))

(verify as an exercise)
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