

The Higgs Boson: from prediction to discovery

ATLAS data analysis and Monte Carlo simulation

Dótt. Michele Pinamonti, Dott. Giancarlo Panizzo

欢迎你们来到乌迪内大学

Particle Physics Summer School 2018, University of Udine 24/07/2018

INTRODUCTION

- What you should know: Ο
 - → Standard Model particles
 - → Radiation-matter interaction
 - → Quantum mechanics:
 - $\frac{1}{\sqrt{2}}$ Energy quantisation
 - Indetermination and casuality
 - Special relativity / relativistic kinematics
- What will you learn: Ο
 - → What the Higgs is and what it is not
 - → How ATLAS data analysis work

THE STANDARD MODEL

hic sunt futura

QUANTUM FIELD THEORY

• For each type of particle in the Standard Model, there's an associated field $\varphi(x) = \varphi(x,y,z,t)$

- Quantum fields are operators: they don't commute!
- \circ ϕ can have several components:
 - scalars have one (complex) component

→

QUANTUM FIELD THEORY

 $\circ~$ Excitations of ϕ correspond to creation of particles / anti-particles

QUANTUM FIELD THEORY

- Some fields are connected to each other:
 - → they interact, i.e. energy exchange between them is allowed
- Example:
 - \rightarrow decay $K \rightarrow \pi \pi$

THE LAGRANGIAN

- The Lagrangian (density) of the Standard Model:
 - → a mathematical expression that contains the rules for particles and interactions between them

➔ for a fermion field with QED interaction:

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int} = \bar{\psi}(x)[\gamma^{\mu}\partial_{\mu} - m]\psi(x) + \frac{ig\bar{\psi}(x)[iA_{\mu}(x)\gamma^{\mu}]\psi(x)}{\text{interaction term}}$$

electromagnetic field

LAGRANGIAN AND SYMMETRIES

- Another, more elegant way to add the interaction with field A(x):
 - → impose **local symmetry** of the Lagrangian (gauge symmetry)

$$\phi \to \phi' \ \Rightarrow \ L \to L' = L$$

- \circ Let's take L₀: $\mathcal{L} = \bar{\psi}(\gamma^{\mu}\partial_{\mu} m)\psi$
 - → it's invariant for global phase rotations, i.e. $\psi \to e^{i\theta}\psi$ if θ doesn't depend on x
 - → but it's **NOT** if $\theta \rightarrow \theta(x)$ (local phase rotations)
- To make L invariant under local phase rotations, we need to move to the **covariant derivative**: $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - igA_{\mu}(x)$
 - ➔ interaction term comes from it!
- Adding kinetic term for the A field we have:

$$\mathcal{L} = \bar{\psi}(\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}_{\qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}}$$

(with A

transforming as $A \rightarrow A - \partial \theta$)

QUANTUM-ELECTRO-DYNAMICS

- The introduced field A(x) is the photon field (massless boson)
- Why massless?
 - → A mass term would break the gauge symmetry!

OTHER INTERACTIONS AND MASSES

- The QED example extends to other interactions:
 - → Weak \rightarrow W+, W- and Z bosons (mixed with QED into EW interaction)
 - → Strong \rightarrow 8 gluons (one for each combination of 2 of the 3 colours)

$$D_{\mu} = \partial_{\mu} - i\frac{g_1}{2} Y B_{\mu} - i\frac{g_2}{2} \sigma_j W^j_{\mu} - i\frac{g_3}{2} \lambda_{\alpha} G^{\alpha}_{\mu}$$

- \circ As for the field A(x), mass terms forbidden for all gauge bosons
 - ➔ To satisfy EW gauge symmetry, mass terms are forbidden also for fermions

$$\mathcal{L} = \bar{\psi}(\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + M^{2}A_{\mu}A^{\mu}$$

- But experimentally:
 - → quarks and charged leptons have mass
 - → the W and Z bosons have (large!) masses...
- We say the the **EW-symmetry** is **broken** by the mass terms in L

ELECTRO-WEAK SYMMETRY

- A simple way to understand how the EW gauge symmetry can forbid fermion mass terms:
 - → the EW interaction is linked to the helicity (the spin projection on the motion axis)

- → The distinction between left-handed (L) and right-handed R) particles is boost-invariant only if m=0, *i.e. helicity is a Lorentz invariant only for mass-less particles*:
 - for massive particles we can consider a reference frame moving faster than the particle, where helicity is different!

THE HIGGS MECHANISM

- Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism proposed in the '60s to explain the EW symmetry breaking:
 - → through the introduction of a new scalar field (the Higgs field)
 - → particles get mass by interacting with this field
 - → EW symmetry is broken in a dynamic way (spontaneous symmetry breaking)

 $\mathcal{L} \to \mathcal{L} + (D_{\mu}\phi)^2 + \mu^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger}\phi)^2$

THE HIGGS MECHANISM

THE GENERATION OF THE MASSES

• In this way:

$$D_{\mu}\phi)^{2} \rightarrow (D_{\mu}(H(x)+v))^{2}$$
$$= \dots - (igW_{\mu}(H(x)+v))^{2}$$
$$= \dots + g^{2}v^{2}W_{\mu}W^{\mu}$$

...and one can have W and Z bosons getting masses (not g and γ)

Moreover, adding "by hand" a new interaction term, the so-called Yukawa interaction (which is gauge-invariant):

$$\mathcal{L} \to \mathcal{L} - y_i \phi \bar{\psi}_i \psi_i = \mathcal{L} - y_i H(x) \bar{\psi}_i \psi_i - y_i v \bar{\psi}_i \psi_i$$

... also the fermion mass terms are obtained

THE SM LAGRANGIAN

• SM Lagrangian, invariant form:

• After EM-symmetry breaking:

$$\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{mass} + \mathcal{L}_{int} + \mathcal{L}_{H}$$

$$\bar{\psi}_{i}\gamma^{\mu}\partial_{\mu}\psi_{i} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$(\partial_{\mu}H)^{2} + \mu^{2}H^{\dagger}H - \lambda(H^{\dagger}H)^{2}$$

$$m_{i}\bar{\psi}_{i}\psi_{i} + M^{2}A_{\mu}A^{\mu} + \dots$$

$$-ig\bar{\psi}_{i}\gamma^{\mu}A_{\mu}\psi_{i} - y_{i}H\bar{\psi}_{i}\psi_{i} - gvHA_{\mu}A^{\mu} + \dots$$

THE HIGGS BOSON

- <u>Notice</u>: until now we didn't talk about Higgs "boson" or "particle"
 - particles don't get mass thanks to the Higgs boson!!!
 - → particles get mass through the *interaction* with the Higgs *field*
 - and actually through the interaction with the part of the field which is NOT associated with the Higgs boson, the v.e.v.

 $\phi(x) \simeq H(x) + v$

- The Higgs boson is a **side-effect** of the Higgs mechanism
 - → but allows to prove the validity of the theory experimentally:
 - a new neutral scalar boson is predicted, with unknown mass but known couplings with massive particles (coupling with H and v is the same, and coupling with v is know thanks to the particle mass)

THE HIGGS BOSON BEFORE LHC

- What did we know about it **before LHC**?
 - → coupling strength with other particles proportional to mass:
 - H prefers to decay into heavy particles
 - H can be produced preferentially from interaction between heavy particles
 - → its mass should be:
 - higher than ~115 GeV from searches at previous colliders (LEP)
 - not too high, in agreement with its indirect determination from a fit to other SM observables

HIGGS BOSON PRODUCTION

hic sunt futura

THE LARGE HADRON COLLIDER

Selection of 1 event in 10,000,000,000,000

SEEING THE HIGGS BOSON

- \circ $\,$ The Higgs boson can only be seen via its decay products
 - → "Stable" and "unstable" particles:

HIGGS BOSON DECAY

A HIGGS BOSON CANDIDATE IN ATLAS

hic sunt futura

UNIVERSITÀ DEGLI STUDI DI UDINE

ATLAS DATA ANALYSIS

• What does it mean "analyse ATLAS data"?

24

ATLAS DATA ANALYSIS

- 1. Define **what** we want to measure
- 2. Choose a "final state" or "channel"
- 3. Identification of **background** processes
- 4. Define an "event selection" (and an "object selection")
- 5. Look at the "observable":

number of events, invariant mass, asymmetry...

- → usually build histogram(s)
- 6. Extract the measurement & it's uncertainty
 - ➔ from the comparison of data histograms with a model (built from theory, assumptions, simulation...)
 - → statistical interpretation

REAL DATA AND SIMULATION

- Detector system
- Trigger
- Data-acquisition
- Data distribution
- Reconstruction
- Calibration

- "In parallel", the analyser should:
 - ➔ get and read the Data from the detector
 - → compare with Simulated Data

- Monte Carlo (MC) generator development
- Simulated event production

SIMPLE EXAMPLE

- 1. What?
 - Measure the production cross-section of the Z boson in pp collisions at 7 TeV
- 2. Final state?
 - → Use the final state with two opposite sign electrons / muons (from Z decay)
- 3. Background?
 - → Events from tt → Wb Wb → Ivb Ivb, events with "fake" lepton(s)...
- 4. Selection?
 - 2 electrons or muons with pT > 25 GeV, |η|<2.5, isolated (energy around lepton below a given threshold)
- 5. Observable?
 - Build a histogram with the dilepton invariant mass

SIMPLE EXAMPLE

- 6. Extract measurement!
 - compare two histograms:
 - data histogram
 - MC-simulation events, scaled according to predicted cross-section and amount of data (integrated luminosity)

- → Scale signal component in MC histogram by a factor µ which maximises the agreement with data
- → Fit procedure:

$$\begin{split} N_i &= \mu^* S_i + B_i \\ X^2 &= \Sigma_i (D_i - N_i)^2 / \sigma^2_{D_i} = \Sigma_i (D_i - \mu^* S_i - B_i)^2 / D_i \\ & \rightarrow & \text{Value of } \mu \text{ minimizing this } X^2 \text{ is used to extract measurement:} \end{split}$$

→ Value of µ minimizing this X^2 is used to extract measurement: $\sigma_z^{\text{measured}} = \mu^* \sigma_z^{\text{prediction}}$

MONTE CARLO SIMULATION

- Monte Carlo simulation used to predict what we expect to see under certain conditions:
 - → to perform studies before having the data
 - ➔ to compute event selection efficiency / acceptance
 - ➔ to predict the amount of background events
 - ➔ to distinguish different signals

"Matrix Element"

- Generation of the central process
- → At "parton level"
- ➔ Usually no decays
- No hadrons
- → No time-evolution

"Parton Shower & Hadronisation"

- Evolution of the final (and initial!) states
- Simulation non-perturbative QCD: gluon emission and gluon splitting
- From partons to parton-jets and hadrons
- Unstable particle decays

"Detector Simulation"

- Simulation of the particle-detector material interaction
- Full simulation very computationally expensive
- Often "fast simulation" used

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

"Matrix Element"

- → MadGraph
- → Multi-leg LO processes (i.e. 2→N processes)
- Any process, at any order in QCD and EW
- → QCD-NLO functionality added with aMCatNLO
- Any new model: useful for new physics studies!

"Detector Simulation"

→ Delphes

➔ Fast simulation of the detector response through parametric simulation (not full simulation)

MADGRAPH INPUTS AND OUTPUTS

- When running MG5, different cards (text files containing options)
- The most important ones:
 - → run_card.dat
 - → param_card.dat
- delphes_card.dat

-						
Block	MASS	#	Mass spectr	um (ki	nemati	c masses)
#	PDG		Mass			
	5	4.7	0000000E+00	# bo	ttom	pole mass
	6	1.7	4300000E+02	# to	р	pole mass
	15	1.7	7700000E+00	# ta	u	mass
	23	9.1	1880000E+01	# Z		mass
	24	8.0	4190000E+01	# W		mass
	25	1.2	0000000E+02	# H		mass
#		PDG	Width			
DECAY		6	1.50833649	E+00	# top	width
DECAY		23	2.44140351	E+00	# Z	width
DECAY		24	2.04759951	E+00	# W	width
DECAY		25	5.75308848	E-03	# H	width

THE GOLDEN CHANNELS

OBSERVATION

DISCOVERY

CERN, 4th July 2012

Physics 2013

Photo: Pnicolet via Wikimedia Commons François Englert Photo: G-M Greuel via Wikimedia Commons Peter W. Higgs

THE SITUATION AT THE END OF LHC RUN I

 All the production and decay channels are measured, with increasing precision ATL

AND IN THE FUTURE?

Higgs Boson Discovery: First success of the LHC, Last success of the Standard Model

- As of today, all the measurements of the Higgs boson production, decay and properties are in agreement with the SM predictions
- The precision is increasing further in the LHC Run 2:
 - Deviations from SM predictions might open the way to New Physics, beyond the Standard Model

TO WORK!

- Exercise and instructions can be found here:
 - → <u>https://twiki.cern.ch/twiki/bin/view/Main/UniudHiggsTutorial2018</u>
- What we will do:
 - → use Madgraph + Pythia + Delphes to generate simulated events
 - for $H \rightarrow ZZ^* \rightarrow 4$ lepton signal
 - and for $ZZ \rightarrow 4$ lepton non-Higgs background
 - → use ROOT to analyse the data (both "real data" and simulated events):
 - reading each event
 - applying a selection
 - filling a histogram
 - → combine the histograms to make a nice plot