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•  F. W. Aston discovered that a He atom has a mass defect 
to four H atoms of 1 part in 120 

•  A. Eddington proposed (1920) that the Sun produces heat 
and light by means of a nuclear transformation of H into 
He 

A journey to the Sun 
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•  H. Bethe proposed a cycle of 
nuclear transformation for 
carbon-containing stars (CNO 
cycle) 
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Sun-like stars 
•  The CNO cycle, works only if the star contains carbon and 

its T > 20 millions K 

•  In the Sun carbon is rare and T ~ 15 millions K è a 
different process is necessary 

•  Bethe found a solution (1939):  
–  for Sun-like stars, H atoms are decomposed into 

protons and electrons  
–  when two protons collide, the nuclear fusion of the two 

is possible 
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The pp chain 
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p+ p→ d + e+ +ν

d + p→3He+γ
3He+3He→4He+ p+ p

•  Globally  

•  Positrons annihilate with electrons producing gamma rays 
•  All gamma rays bounce repeatedly with charged particles, losing 

energy in their way towards the surface  
•  At last they emerge from the star as visible light after thousands 

of centuries 

4p→ 4He+ 2e+ + 2γ + 2ν
energy 



Solar neutrinos 

•  The neutrinos, instead, would traverse the Sun 
unimpeded and reach the Earth in about eigth minutes 

•  Bethe’s theory explained the facts and predicted the 
production of neutrinos 

•  But in 1939 the neutrino was still considered just a 
theoretical construction 

•  This changed after Pontecorvo’s 1946 paper and Cowan 
and Reines’ 1956 antineutrino discovery 

•  The possibility to verify Bethe’s theory, searching for 
solar neutrinos was considered 
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Another ‘failure’ of Davis’ 

•  If solar neutrinos were produced in the CNO cycle, 
Davis’ apparatus could detect them 

•  But Davis’ try failed so 
–  either the idea of solar neutrinos was wrong  
–  or the CNO cycle was not important to the Sun 

•  Actually in the Sun the dominant process is the pp chain 
whose neutrinos have insufficient energy (less than one 
half) for the Cl reaction (860 keV) in Davis’ experiment 
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Good news... 
•  In the pp chain one He4 nucleus is produced 
•  He4 has kept accumulating in the Sun for 5 billions years 
•  èit is possible that 

•  In 1959 two nuclear physicists* found that berillium-7 
production was 1,000 times more probable than expected 

•  7Be, on its turn, can fuse with a proton, producing boron-8  
 
•  8B decays generating a neutrino with an energy of 14 

MeV 

•  and this energy is well over the Cl threshold of Davis’ 
experiment 

€ 

3He+4He→7Be+γ

7Be+ p→ 8B+γ

8B→ 8Be+ e+ +ν
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... and bad news 

•  This encouraged Davis and Calvin to start a new 
experiment (1959), with the Savannah River detector 

•  To reduce the cosmic-ray background, the experiment 
moved in a mine 700 meters underground 

•  Unfortunately nuclear physics experiments found that the 
probability for Be7-p fusion was very small 

•  and Davis again could not find any convincing evidence of 
solar neutrinos 
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Bahcall & Davis 
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•  He computed the probability of the Be7-p fusion: the result 
(1963) was not encouraging 

•  The probability in the Sun was higher than on Earth, but a 
4000-liter detector would capture one neutrino in 100 days 

•  èDavis thought of a detector 100 times bigger 
•  To suppress the cosmic-ray backgound, they decided the 

experiment had to be moved 1500 meters underground 

•  J. Bahcall: the probability of weak 
interactions in the stars must be higher than 
in the lab on Earth  



Homestake, 1966 

•  When B. Mottelson noticed that solar neutrinos should 
have enough energy to form the Ar nucleus in an excited 
state... 

•  Bahcall computed the new process, finding that neutrino 
capture by Cl was increased 20 times  

•  The experiment was built in the Homestake gold mine in 
Lead, SD 

•  The tank contained 615 tons of C2Cl4 , a normal cleaning 
agent 

•  By September 1966 it was ready to start making the 
history of physics 
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How many solar neutrinos? 

•  On the basis of the Standard Solar Model (SSM), Bahcall 
calculated the solar neutrinos flux on Earth, finding a total 
of 66 x 109 s-1 cm-2 

•  Unfortunately most of the times the neutrinos have 
insufficient energy to react with Cl 

•  Moreover nearly all of them would pass through the 
detector without interaction 
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The SNU 

•  Bahcall expressed the probability that a solar neutrino 
interacts with a Cl nucleus introducing the Solar Neutrino 
Unit:                

  1 SNU=10-36 reactions/nucleus/s 
•  In 400,000 liters of detergent there are about 2 x 1030 Cl 

nuclei èthe mean neutrino capture time is 6 days per 
SNU 

•  Bahcall’s result was 7.5+-3 SNU and about 6 of these 
were produced by B8, the ones which Davis’ experiment 
was able to detect 
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Solar neutrino spectrum 

Calculated 
energy 
spectrum of the 
solar neutrinos 
according to the 
Standard Solar 
Model 
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Neutrinos eventually!  
(but too few)  

•  1968: first results published: the production frequency of 
neutrinos was too small, 3 SNU at best 

•  In the following years the cosmic-ray background was 
reduced, the SSM reexamined, while the statistics was 
slowly accumulating... but neutrinos kept missing 

•  èSolar neutrino problem 
•  1978: at the Brookhaven conference it was realized that 

a new experiment was necessary to detect the neutrinos 
from the dominant pp fusion 

•  From 1968 to 1988 Davis’ experiment was the only 
active experiment investigating solar neutrinos 
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Davis’ experiment results* 
•  Davis’ experiment ran continuously until 1994 
•  1998: final results:  

–  2200 Ar atoms produced,1997 extracted 
–  875 counted in the PC: 109 BG events, 776 produced by solar 

neutrinos 

16 
* The 2002 Nobel Prize in Physics - Advanced Information".  
Nobelprize.org. Nobel Media AB 2014. Web. 10 Jul 2018.  
<http://www.nobelprize.org/nobel_prizes/physics/laureates/2002/advanced.html> 

Production rate:  
2.56  
± 0.16 (stat.)  
± 0.16 (syst.) SNU 



•  In 1968, when Davis’ first results appeared, Pontecorvo and 
Gribov proposed the right solution to the missing neutrinos  

•  The idea of neutrino oscillations had been first proposed by 
Pontecorvo (1957) as neutrino-antineutrino transitions 

•  This was later developed to the theory of neutrino flavor 
oscillation, by Maki, Nakagawa and Sakata (1962) and 
Pontecorvo (1967) 

•  The theory is based on the existence of two neutrino states 
•  Quantum mechanics allows neutrinos to oscillate between the 

two states, provided they have mass 
•  The idea that neutrinos have mass, went against the Standard 

Model of the elementary particles and for this reason the idea 
was simply ignored 

The ignored solution 
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Neutrinos from the pp 
process  

•  Gallium provides the only feasable means to measure 
the low-energy pp neutrinos 

•  Thanks to a threshold of only 0.233 MeV for the reaction  

    with a neutron in the Ga nucleus  
•  The detection frequency of this detector would be 132 

SNU, compared to the 7,5 SNU of Davis’ detector 

νe + n→ e− + p
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All the gallium in the world 

•  Two experiments were built:  
–  GALLEX under the Gran Sasso, Italy 
–  SAGE under the Caucasus mountains, former USSR 

•  Both experiments used the germanium-producing 
reaction 

•  To build SAGE all the world supply of Ga was necessary 
•  GALLEX had to wait two more years for the production of 

the Ga it needed  

νe +
71Ga→ e− + 71Ge

19 



Why two experiments? 

•  Both experiments used the same reaction 

•  The composition of the Ga target was metallic gallium for 
SAGE and a liquid gallium chloride solution for GALLEX 

•  The different forms of the gallium are susceptible to very 
different types of backgrounds, and thus the two 
experiments provided a check for each other 
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SAGE (1989-2010) 

•  The target was 57 tonnes of liquid Ga metal 
•  Once a month Ge was chemically extracted from the Ga 
•  71Ge undergoes electron capture (T1/2 = 11.43 days)  

•  The extracted amount of Ge can be determined with a 
proportional counter by measuring the activity of the 
resulting Ga atom in an excited state  

•  The excess energy is carried off by low-energy Auger 
electrons and by X-rays, which, taken together, make for 
a characteristic decay signature 

e− + 71Ge→νe +
71Ga*
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GALLEX* (1991-1997) 

•  GALLEX 54-m3 detector tank 
was filled with 101 tons of a 
solution of GaCl3 and HCl, for 
a total of 30.3 tons of Ga 

•  The produced Ge was 
chemically extracted and 
detected by counters 
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Results 

•  The SSM predicted 130 SNU 
•  SAGE’s result was 65.4 SNU (based on the 1990-2007 

data)  
•  GALLEX measured a rate of 77.5 SNU 
•  Both experiments found about half as many neutrinos as 

expected 
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KamiokaNDE (1983) 

•  The detector was a tank 16.0 m in height and 15.6 m in 
width, containing 3,048 tonnes of ultra-pure water and 
about 1,000 PMTs 

•  The aim of the experiment was to find whether the proton 
decays 

•  Since neutrinos are a major background to the search for 
proton decay, the study of neutrinos became a major 
effort 

•  Kamiokande could detect neutrinos in real time, with an 
obvious advantage on Davis’ detector 

•  There neutrinos were counted one month after 
interaction, after radiochemical extraction of the 
produced Ar atoms  
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KamiokaNDE II 

•  The detector was upgraded, starting in 1985 to allow it to 
observe solar neutrinos  

•  As a result the detector KamiokaNDE-II had become 
sensitive enough to detect neutrinos from SN 1987A  

•  1988: K-II observes solar neutrinos produced by B8  
•  The ability of the experiment to observe the direction of 

electrons produced in solar neutrino interactions, 
demonstrated for the first time that the Sun was a source 
of neutrinos  

•  The number of detected neutrinos resulted too low also 
for this reaction, about half of what was expected 
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Super-Kamiokande (1996) 
•  Kamiokande failed to detect proton decay, and this led to 

the construction of Super-Kamiokande 
•  Super-K is a large water Cherenkov detector used to 

study proton decay and neutrinos from different sources 
including the Sun, supernovae, the atmosphere and 
accelerators 

•  The detector is located 1,000 meter underground in the 
Kamioka mine, Gifu, Japan 
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Super-K detector* 
•  It	consists	of	a	cylindrical	stainless	

steel	tank	that	is	41.4	m		tall	and	
39.3	m	in	diameter	holding	50,000	
tons	of	ultra-pure	water	

•  The	tank	volume	is	divided	into	an	
inner	detector	(ID)	region	that	is	
33.8	m	in	diameter	and	36.2	m	in	
height	and	outer	detector	(OD,	in	
the	remaining	tank	volume)	
opJcally	separated	from	the	ID	

•  Mounted	on	the	superstructure	
are	11,146	PMTs	50	cm	in	
diameter	that	face	the	ID	and	
1,885	20	cm	PMTs	that	face	the	
OD	 A cross section of the Super-K detector 

27 
* Y. Fukuda et al., Nucl. Instr. and Meth. A 501 (2003) 418  



Principle of operation 

•  A	neutrino	interacJon	with	the	electrons	or	nuclei	of	water	
can	produce	a	charged	parJcle	that	moves	faster	than	the	
speed	of	light	in	water	

•  This	creates	a	cone	of	light	known	as	Cherenkov	radiaJon	
•  The	Cherenkov	light	is	projected	as	a	ring	on	the	wall	of	the	

detector	and	recorded	by	the	PMTs	
•  Using	the	Jming	and	charge	informaJon	recorded	by	each	

PMT,	the	interacJon	vertex	and	parJcle	direcJon	is	
determined	
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Flavor identification 
•  From	the	sharpness	of	the	edge	of	the	ring	the	type	
of	parJcle	can	be	inferred	

•  The	mulJply	scaTered	electrons	produce	fuzzy	rings	
•  Highly	relaJvisJc	muons,	in	contrast,	travel	almost	
straight	through	the	detector	and	produce	rings	with	
sharp	edges	
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Solar neutrinos (still missing) 
•  Super-K	detected	the	elasJc	
scaTering		reacJon	

•  which	has	a	relaJve	
sensiJvity	to	νe	and	νµ + ντ 	of	 
~7:1	

•  The	8B	solar	neutrino	flux	was	
calculated	to	be	2.40	x	106	
cm-2	s-1,	only	0.465	of	the	
SSM	predicJon	

ν k + e
− →ν k + e

−
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Atmospheric neutrinos 

•  Atmospheric neutrinos have an energy from tens to 
several hundred times bigger than solar neutrinos 

•  Neutrino production by cosmic rays  
         and charge conjugates 

    is 1 e-neutrino every 2 mu-neutrinos 
•  When a neutrino hits an atom, it can transform in an 

electron or in a muon 
•  Since 1985 it was known that the measured ratio of 

atmospheric muonic to electronic neutrinos was nearer 
to one than to the expected value of two 
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π + → µ+ +νµ µ+ →νµ + e
+ +νe



The anomaly of 
atmospheric neutrinos 

•  Super-K studied the νµ/νe flux ratio by observing final state 
leptons produced in interactions of neutrinos on nuclei 

•  The flavor of the final state lepton is used to identify the flavor 
of the incoming neutrino 

•  The quantity 

•  is expected to be 1, if the physics in the Monte Carlo simulation 
accurately models the data  

•  Super-K was able to determine the incoming direction of 
neutrinos sufficiently well to tell whether they came from the 
atmosphere, 10 km above Super-K, or from the other side of 
the Earth, traveling 13,000 km through the planet 
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ν k + N→ lk + X
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Nµ−like Ne−like( )DATA
Nµ−like Ne−like( )MC



Super-K results 

•  1998: the number of upward going (U) atmospheric muon 
neutrinos (generated on the other side of the Earth) is half 
the number of downward going (D) muon neutrinos  

•  Studying the asymmetry  

•  no significant asymmetry was observed in the e-like data   
•  the µ-like data exhibited a strong asymmetry in zenith 

angle at high momentum (significantly deviating from 
expectations) 
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A = NU − ND

NU + ND



Oscillations, at last 
•  Neutrino oscillations were suggested to explain such 

deviations 
•  Two-neutrino oscillation hypothesis:  

–  the probability for a neutrino of energy Eν  
–  produced in a state a  
–  to be observed in a flavor state b  
–  after traveling a distance L is 

•  θ and Δm2 are parameters of the hypothesis 
34 
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Super-K examined two-flavor   and  
oscillation models   

νµ oscillations*  

•  The best fit to 
oscillations was 
obtained for  

(*) Y. Fukuda et al., Evidence for Oscillations of Atmospheric Neutrinos, Phys. Rev. Lett. 81,  
1562 (1998). 

νµ ↔νe

sin2θ =1.0
Δm2 = 2.2×10−3eV 2

νµ ↔ντ

νµ ↔ντ νµ ↔νe

•  The                hypothesis  
•  and the no oscillation hypothesis were both highly disfavored	
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νµ oscillations  

•  The explanation of the atmospheric neutrino anomaly is:  

•  upward-going muon neutrinos have oscillated into a third 
neutrino type, the tau neutrino 

•  downward-going muon neutrinos, on the other hand, 
interacted inside of Super-K before they had traveled far 
enough to change types 
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•  It was awarded to M. Koshiba (Kamiokande) and Davis, 
but not to Bahcall, “for pioneering contributions to 
astrophysics, in particular for the detection of cosmic 
neutrinos” 
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2002 Nobel Prize in Physics  



Back to the Solar 
Neutrino Problem 

•  Was Davis’ problem with electron neutrinos also due to 
neutrino oscillations? 

•  Pontecorvo and Gribov and Maki, Nakagawa and Sakata 
explained  the solar neutrino problem from the existence 
of more than one kind of neutrinos 

•  If an electronic neutrino turns muonic in the way between 
Sun and Earth, it will traverse Davis’ detector without 
interacting 

•  To verify this idea, a new experiment was built 2100 m 
underground in a nickel mine in Sudbury, Ontario, 
Canada: the Sudbury Neutrino Observatory (SNO) 
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The SNO detector 
The detector consists of 1000 tonnes 
of ultra-pure heavy water enclosed in 
a 12-m diameter acrylic plastic 
vessel, surrounded by 7000 tonnes 
of ultra-pure ordinary water 
contained in a 34-m high cavity of 
maximum diameter 22 m 
 
Outside the acrylic vessel is a 17-m 
diameter geodesic sphere containing 
9456 photomultiplier tubes, which 
detect Cherenkov light emitted as 
neutrinos are stopped or scattered in 
the heavy water	

ν

The detection rate is of the order of 10  
neutrinos per day  
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SNO novelty* 
•  Cl and Ga-based experiments: exclusively sensitive to e-nu’s 
•  H2O-based experiments: predominantly sensitive to e-nu’s  

•  SNO used heavy water (D2O) and measured: 
•  the elastic scattering (ES) reaction νx  + e- -> νx + e-  active for 

all neutrino kinds but 6 times more sensitive to νe’s than to other 
flavors (also used by Kamiokande-II and Super-K) 

•  the charged current (CC) reaction νe + d -> p +p + e- sensitive 
exclusively to νe’s (only these nu’s have enough energy to 
produce the associated lepton) 

•  the neutral current (NC) reaction νx + d -> p +n + νx  equally 
sensitive to all neutrino flavors  

40 * A. Bellerive et al., SNO Collaboration, Nucl. Phys.B 908 (2016). 



Neutrino detection  
•  νe + d -> p +p + e- : CC detected by observing the cone of 

Cherenkov light produced by the electrons  
•  νx + d -> p +n + νx :  

–  NC initially detected with pure D2O via Cherenkov light 
from conversion of the 6.25 MeV γ ray produced upon 
neutron capture on deuterium n + d -> 3H + γ 

–  BUT: the neutron capture cross section on deuterium is 
small + the γ ray energy of 6.25 MeV is near SNO’s 
energy threshold ènumber of NC events was low 

•  νx  + e- -> νx + e- : ES also detected via the Cherenkov 
light produced by the electrons 

41 



Neutrino detection  
•  νx + d -> p +n + νx :  

–  NC in a second phase detected with NaCl dissolved in 
D2O: the thermal neutron capture cross-section for 35Cl 
is nearly five orders of magnitude larger than that for 
the deuteron  

–  The Q-value for radiative neutron capture is 8.6 MeV 
è increase in the released energy led to more 
observable NC events  

–  the cascade of prompt γ rays following neutron capture 
produced a Cherenkov-light hit pattern very different 
from that by a single relativistic electron from CC or ES 
reactions  
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The 8B neutrino flux* 
•  Compared the flux ΦES(νx) deduced from ES (assuming no 

neutrino oscillations), to ΦCC(νe) measured by CC reaction  
•  If neutrinos from the Sun change into other active flavors, 

èΦCC(νe) < ΦES(νx)  
•  SNO found 

•  Reference to Super-K value for ΦES(νx) was made 
because of its better precision 

•  The measured value of ΦCC(νe) is inconsistent with the null 
hypothesis that all observed solar neutrinos are νe  

43 * Q. R. Ahmad et al., SNO Collaboration, Phys. Rev. Lett. 87:071301 (2001). 

ΦCC νe( ) =1.75± 0.07 stat.( )−0.11
+0.12 sys.( )± 0.05 theor.( )×106cm−2s−1

ΦES ν x( ) = 2.39± 0.34 stat.( )−0.14
+0.16 sys.( )×106cm−2s−1



The 8B neutrino flux 
•  Best fit to Φ(νµτ): 

3.69±1.13 x 106 cm-2 s-1  
•  First direct indication of 

a non-electron flavor 
component in the solar 
neutrino flux   

•  Total flux of active 8B 
neutrinos Φ(νx): 
5.44±0.99 x 106 cm-2 s-1 

•  In excellent agreement 
with the predictions of 
standard solar models  
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Inferred flux of non-electron neutrinos 
Φ(νµτ) against the flux of e-neutrinos Φ(νe)  



The advantage of being 
heavy 

•  SNO exploited a reaction unique to heavy 
water  

•  The use and the advantages of heavy 
water were proposed by H. H. Chen (1984) 

•  Its use provided a means to measure both 
electron and non-electron components, 
and the presence of the latter showed that 
neutrino flavor conversion was taking 
place  
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SNO (1999-2006) 
•  During 2002 and 2003 the detector was upgraded and any 

reference to Super-K was no longer necessary 
•  Although Super-K had beaten SNO on time, having 

published evidence for neutrino oscillation as early as 1998 
•  the Super-K results were not conclusive and did not 

specifically deal with solar neutrinos 
•  SNO's results were the first to directly demonstrate 

oscillations in solar neutrinos  
•  The final results were published in 2003:  
•  e-neutrino flux:1.75x106 cm-2 s-1   
•  total flux: 5.21x106 cm-2 s-1, about three times as much 
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Solar Neutrino Problem  
conclusions* 

•  Davis had been correctly measuring solar neutrinos 
for 30 years 

•  For 30 years people had doubted Bahcall, 
regarding him as ‘the guy who wrongly calculated 
the flux of neutrinos from the Sun’ 

•  His calculation of solar neutrino production was 
correct; in his words, the agreement was  

            ‘so close that it was embarrasingly close’ 

47 * F. Close, Neutrino, Oxford University Press, 2012 



2015 Nobel Prize in Physics  

•  It was awarded to T. Kajita (SuperK) and A.B. McDonald 
(SNO) “for the discovery of neutrino oscillations, which shows 
that neutrinos have mass” 
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•  Neutrino mixing is expressed as a unitary transformation 
U relating the flavor and mass eigenstates 

•  If          represents a neutrino with definite flavor (f = e, µ, 
τ, …) 

•  and           a neutrino with definite mass (i = 1, 2, 3, …) 
•  in the 3-neutrino scenario, the transformation reads 

ν f

νm

ν f = Ufm
* νm

m=1,2,3
∑νm = Ufm ν f

f =e,µ,τ
∑

Oscillation parameters 
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PMNS matrix 
•  Ufm is the Pontecorvo-Maki-Nakagawa-Sakata matrix 
•  Neglecting a possible Majorana character of neutrinos, U 

is written 

 
•  If experiment shows this matrix to be not unitary a new 

neutrino (sterile neutrino) is required 
•  If δ is non-zero neutrino oscillation violates CP symmetry 

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ 2 Uτ 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

=
1 0 0
0 cosθ23 sinθ23
0 −sinθ23 cosθ23

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟⎟

cosθ13 0 sinθ13e
−iδ

0 1 0
−sinθ13e

iδ 0 cosθ13

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

cosθ12 sinθ12 0
−sinθ12 cosθ12 0
0 0 1

⎛

⎝
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⎜
⎜⎜

⎞

⎠
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⎟
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New parameters, new 
experiments 

•  The existence of oscillations brought into physics 9 new 
parameters in a stroke:  
–  the three neutrino masses: m1 , m2 , m3  
–  the three mixing angles: θ12 , θ23 , θ13  
–  the CP-violation phase: δ  
–  and two Majorana phases 

•  All these parameters are absent from the Standard 
Model for elementary particles, which, for this reason 
needs to be reformulated 

•  A host of new experiments was conceived, reactor, 
accelerator and cosmic neutrino experiments, aimed at 
studying the new parameters 
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More neutrino experiments 
experiment	 site	 addiJonal	site	 goal	 source	 begin	oper	 end	oper	
CUORE	 Gran	Sasso,	IT	  - 0νββ	 Te130	 2016	
Borexino	 Gran	Sasso,	IT	  - Be7	sun	n	flux	 sun	 2007	
SOX	 Gran	Sasso,	IT	  - n_e,an_e	oscillaJon	 Cr51	Ce144	 2017	
Daya	Bay	 Daya	Bay,	PRC	  - an_e	oscillaJon	 6	reactors	
KATRIN	 Karlsruhe,	GE	  - n_e	mass	 H3	
ICARUS	
EXO-200 WIPP,	Carlsbad,	NM	  -  0νββ	 Xe136	 2011	
LSND	 Los	Alamos,	NM	  - n_mu	oscillaJon	 beam	 1993	 1998	
MAJORANA	 Sanford,	Lead,	SD	  - 0νββ	 Ge76	 2015	
MicroBooNE	 Fermilab,	IL	  - MiniBooNE	check	 beam	 2015	
MiniBooNE	 Fermilab,	IL	  - n_mu -> n_e beam	 2002	
MINERvA	 Fermilab,	IL	  - nu	scaTering	 beam	 2010	
MINOS	 Fermilab,	IL	 Soudan,	MN	+735	 n_mu	oscillaJon	 beam	 2005	 2012	
MINOS+	 Fermilab,	IL	              " " " 2013	 2016	
NOvA	 Fermilab,	IL	 Ash	River,	MN	+810	 n_mu->n_e beam	 2014	
DUNE	 Fermilab,	IL	 Sanford,	Lead,	SD	+1300	 n_mu	oscillaJon	 beam	 2022	
SciBooNE	 Fermilab,	IL	  - MiniBooNE		aux	 beam	 2008	
SBND	
SNO	 Sudbury,	CA	  - n_e	oscillaJon	 sun	 1999	 2006	
SNO+	 Sudbury,	CA	  - 0νββ	 Te130	 2016	 		
Kamiokande	II	 Kamioka,	JP	  - 		 sun,	atmosphere	 1985	 1995	
Super-K	 Kamioka,	JP	  - 		 sun,	atmosphere	 1996	 		
K2K	 Tsukuba,	JP	 Kamioka,	JP	+250	 n_mu	->	n_tau	 beam	 1999	 2004	
T2K	 Tokai-280m,	JP	 Kamioka,	JP	+295	 n_mu	->	n_e	 beam	 2010	 		
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