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current open questions.
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Many types of phenomena

Microlensing. Lens: star or _ LRG3-757 (HST)
planet; source: star

Strong lensing. Lens: galaxy or
galaxy cluster; source: QSO,
galaxy
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Many types of phenomena

Microlensing. Lens: star or
planet; source: star

Strong lensing. Lens: galaxy or
galaxy cluster; source: QSO,
galaxy

Weak lensing. Lens: galaxy or
galaxy cluster; source: galaxy

- MACS J0717 (credit: Hagvey et al)



Many types of phenomena

Microlensing. Lens: star or

planet; source: star

Credit: C. Khee-Gan & C. Stark
Strong IEHSIIIg. Lens: galaxy or e I* o

galaxy cluster; source: QSO,
galaxy

Weak lensing. Lens: galaxy or
galaxy cluster; source: galaxy

Cosmic shear. Lens: large scale

structure; source: galaxies (or
CMB)



Many types of phenomena

Strong lensing. Lens: galaxy or
galaxy cluster; source: QSO,
galaxy

Weak lensing. Lens: galaxy or
galaxy cluster; source: galaxy

Abell 370




Uses of gravitational lensing



Uses of gravitational lensing

Magnification effect. Lenses allow us to detect and study
objects which are too distant or too faint to be observed
without lensing (e.g., Salmon et al. 2018)



Uses of gravitational lensing

Magnification effect. Lenses allow us to detect and study
objects which are too distant or too faint to be observed
without lensing (e.g., Salmon et al. 2018)

Mass distribution of the lens. Gravitational lensing depends
solely on the projected, two-dimensional mass distribution of
the lens. Lensing is thus an ideal tool to study dark matter.



Uses of gravitational lensing

Magnification effect. Lenses allow us to detect and study
objects which are too distant or too faint to be observed
without lensing (e.g., Salmon et al. 2018)

Mass distribution of the lens. Gravitational lensing depends
solely on the projected, two-dimensional mass distribution of
the lens. Lensing is thus an ideal tool to study dark matter.

Cosmology. Many properties of individual lens systems or
samples of lensed objects depend on the age, the scale, and
the overall geometry of the Universe.
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Weak lensing of CL 0152 (Jee et al. 2005)
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Weak lensing of CL 0152 (Jee et al. 2005)
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Weak lensing of CL 0152 (Jee et al. 2005)
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Weak lensing of CL 0152 (Jee et al. 2005)
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Weak lensing of CL 0152

(Jee et al. 2005)
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Weak lensing of CL 0152 (Jee et al. 2005)
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Principles of gravitational lensing

« Gravity acts on light as a medium with (variable) refractive index
n=1-2a¢/cz

* (Gravitational lenses are perfectly acromatic
« Can produce both a delay and a bending of light rays

* The entire phenomenon can be described in terms of classical
optics (magnification, caustics, time delay...)
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Principles of gravitational lensing

« Gravity acts on light as a medium with (variable) refractive index
n=1-2a¢/cz

* (Gravitational lenses are perfectly acromatic
« Can produce both a delay and a bending of light rays

+ The entire phenomenon can be described in terms of classical i%

optics (magnification, caustics, time delay...) —  __.--=""" Apparent
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Gravitatonal tme delay

* The time it takes the light to travel through a lens is
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Gravitatonal time delay

* The time it takes the light to travel through a lens is

ct:fn(x)dley\ ifqb(x)df
y = Jy

“ Sum of a geometric term...

“ ...and of a gravitational term

* For a “thin lens” the this can be written as
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Gravitatonal tme delay

* The time it takes the light to travel through a lens is

ct:fn(x)dley\ ifqb(x)df
y = Jy

“ Sum of a geometric term...

“ ...and of a gravitational term

* For a “thin lens” the this can be written as

DaD.T1 -
ct = (1+424)=2222110 — 0°1> = W(0) | + const
Dds N J

Fermat’s potential
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A variable source observed through a lens allows one to
measure the time delays among the multiple images.



Fermat's potential

* Fermat’s principle holds in General Relativity

“ As a consequence, Fermat’s potential

Dy4D. -
ct = (1+2z9) 5 ue 05(|2 — W(0)| + const
ds

can be used to find the 1mage(s) associated to a source:
Vo(ct) =0 = 0, =0 - V¥ (0)

* The associated “ray-tracing” equation is solved
(numerically) and is a fundamental step of strong
lensing modeling
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Fermat's potential and image configurations

No lens

Fermat’s potential is just an axisymmetric paraboloid.

A single image is observed, corresponding to the
minimum of the potential, where 0° = 0 (no lensing).
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Fermat's potential and image configurations

Axisymmetric lens

Fermat’s potential has a central peak, a saddle point, and
a minimum.




Fermat's potential and image configurations

Axisymmetric lens

Fermat’s potential has a central peak, a saddle point, and
a minimum.

Image corresponding to the peak usually very faint.




Fermat’s potenual & image configurations

Non-axisymmetric lens

Fermat’s potential has a central peak, and several points,
and minimuma.

Image corresponding to the peak usually very faint.
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Magnification effect

Gravitational lensing generally increases the luminosity of sources.

Gravitational lensing

* 1s described by a simple
mapping (ray tracing)

* conserves the surface
brightness

* does not conserve the flux

Seeing

* 1s described by a convolution

with a kernel

* does not conserve the surface

brightness

+ conserves the flux

When studying a strong lensing system both effects needs to be

taken into account.
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Problems of Cold Dark Matter



Problems of Cold Dark Matter

F568-3 (Weinberg et al. 2015)

* The cusp-core problem

* (Dwarf) galaxies show a core
not predicted by simulations
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Problems of Cold Dark Matter

Garrison-Kimmel et al. (2014) _

The cusp-core problem

(Dwarf) galaxies show a core | .
not predicted by simulations " e @ -

Missing satellites problem

Too few satellites observed
around massive halos




Problems of Cold Dark Matter

* The cusp-core problem

* (Dwarf) galaxies show a core

Ursa Minor

not predicted by simulations

..« Draco

* Missing satellites problem

M ilﬂ*ﬁy

Roroaey
S

. . CLUERE S
“ Too few satellites observed ey

around massive halos L i | sagittarius

: Sculptor

Fomax

Yniguez et al. (2014)




Problems of Cold Dark Matter

The cusp-core problem . XMMU 2235 (Jee et al. 2009)

(Dwarf) galaxies show a core
not predicted by simulations

Missing satellites problem

Too few satellites observed
around massive halos

Early mass assembly

Massive clusters form earlier
than expected




Simulations and Observations

* Cosmological simulations predict the
structure of halos

* Run different cosmological simulations
with different properties of DM particles

* CDM predicts more structures than
WDM or HDM

* Self-interacting CDM can make halos
with cores

* Compare simulations and observations
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* Run different cosmological simulations
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* CDM predicts more structures than
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Simulations and Observations

Cosmological simulations predict the
structure of halos

Run ditferent cosmological simulations
with different properties of DM particles

CDM predicts more structures than
WDM or HDM

Self-interacting CDM can make halos
with cores

UOLINZ JO AJISISATU() ‘DIOO0A Ud¢ :3IPaI)

Compare simulations and observations




Simulations and Observations

+ Cosmological simulations have reached the resolution to distinguish
among various DM models

+ Observations now contain exquisite details to perform accurate

strong lensing modeling



Simulations and Observations

Cosmological simulations have reached the resolution to distinguish
among various DM models

Observations now contain exquisite details to perform accurate
strong lensing modeling
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Cluster Lensing And Supernovae survey with Hubble

# 524-orbit HST multi-cycle treasury program (PI: M. Postman)

# 25 massive intermediate-z galaxy clusters (4 HFF) observerd
with 16 (ACS+WFC3) broadband filters

* Study DM mass profiles and substructures with
unprecedented precision and resolution

* Detect some of the most distant (z > 7) galaxies through
the gravitational lensing magnification effect

* Find in parallel fields new Type Ia SNaeup toz ~ 2.5



CLASH-VLT

# 200-hr VLT/VIMOS Large Program (PI: P. Rosati)

* Spectroscopic follow-up of the 14 southern CLASH galaxy clusters (2
HFF)

* Dynamical study beyond Ryi with ~500 members per cluster
“ Spectroscopic confirmation of the multiple-image systems

* Galaxy formation and evolution analyses of lens and lensed galaxies
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CLASH-VLT data reduction summary
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Abell 2744
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HFF in CLASH-VLT

RX]J 2248. 16 VIMOS masks (12 LR-Blue & 4 MR)
+ Total exposure time: 15 hours

+ 3734 reliable redshifts (area: 23x26 arcmin?)

+ ~1100 cluster members (z = 0.346)



HFF in CLASH-VLT

RX]J 2248. 16 VIMOS masks (12 LR-Blue & 4 MR)
+ Total exposure time: 15 hours
+ 3734 reliable redshifts (area: 23x26 arcmin?)
+ ~1100 cluster members (z = 0.346)
MACS 0416. 21 VIMOS masks (15 LR-Blue & 6 MR)
« Total exposure time: 20 hours
» 4386 reliable redshifts (area: 23x26 arcmin?)
~900 cluster members (z = 0.396)



HFF in CLASH-VLT

RXJ2248 (-1100 cluster members)
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Complex dynamical structure of MACS 0416
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Balestra, Mercurio, Sartoris, et al. 2016, ApJS, 224, 33



The muluple-image spectra

For each system, at least 1 image has an either
secure or very likely redshift

If we have one secure and one very likely, we
take the secure

If we have two secure, we take the mean value
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Grillo et al. (2005)

The muluple-image spectra
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For each system, at least 1 image has an either
secure or very likely redshift

If we have one secure and one very likely, we
take the secure
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The muluple-image spectra

For each system, at least 1 image has an either
secure or very likely redshift

If we have one secure and one very likely, we
take the secure

If we have two secure, we take the mean value
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The muluple-image spectra

For each system, at least 1 image has an either
secure or very likely redshift

If we have one secure and one very likely, we
take the secure

If we have two secure, we take the mean value
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The muluple-image spectra

For each system, at least 1 image has an either
secure or very likely redshift

If we have one secure and one very likely, we
take the secure

If we have two secure, we take the mean value
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Hubble Frontier Fields and s MUSE

+ 24 IFU, 1 arcmin?, resolution 0.2”, R = 3000, 4800-9300 A, total efficiency ~25%



Hubble Frontier Fields and f MUSE

+ 24 IFU, 1 arcmin?, resolution 0.2”, R = 3000, 4800-9300 A, total efficiency ~25%
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* 4 x Thr OB in the SW (SV; PI: Caputi, Grillo, Clement)

# 6 x 1hr OB in the NE (PI: Caputi)
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Hubble Frontier Fields and f MUSE

+ 24 IFU, 1 arcmin?, resolution 0.2”, R = 3000, 4800-9300 A, total efficiency ~25%
+ RX]J 2248 (Karman et al. 2015, 2017)
* 4 x Thr OB in the SW (SV; PI: Caputi, Grillo, Clement)

# 6 x 1hr OB in the NE (PI: Caputi)

+ MACS 1149 (Grillo et al. 2016)

+ 6 x 1hr OB in the core (obtained with DDT;, PI: Grillo)
+ MACS 0416 (Caminha et al. 2017)

+ 2hr in the NE (GTO; PI: Richard)

+ 11 hr in the SW (PI: F.E. Bauer)



Dec (J2000)

RX]J 22438 (2 MUSE pointings
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10 foreground galaxies 17 multiple-image systems
120 cluster members 43 images

42 background galaxies Zmax = 6.107
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MACS 1149 (1 MUSE pointing

15.0"

24'C0.0"

Dac ()2000)

i T ' I s
33.00s 37.00s 36.00s
RA (J2000)

|

5 foreground galaxies
68 cluster members

30 background galaxies

35.005 11n49m34.005

0

38.00s 37.00s 36.00s 35.00s 11h49m34.00s
RA (12000)

7 multiple-image systems
18 images

Zmax = 3 . 703
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Cluster Lensing And Supernova survey with Hubble (CLASH)
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Refsdal (1964)

ON THE POSSIBILITY OF DETERMINING HUBBLE’S PARAMETER
AND THE MASSES OF GALAXIES FROM THE GRAVITATIONAL
LENS EFFECT*

Sjur Refsdal

(Communicated by H. Bondi)
(Received 1964 January 27%)

Summary

'The gravitational lens effect is applied to a supernova lying far behind and
close to the line of sight through a distant galaxy. The light from the super-
nova may follow two different paths to the observer, and the difference At in
the time of light travel for these two paths can amount to a couple of months
or more, and may be measurable. It is shown that Hubble’s parameter and
the mass of the galaxy can be expressed by At, the red-shifts of the supernova
and the galaxy, the luminosities of the supernova ‘‘ images’’ and the angle
between them. The possibility of observing the phenomenon is discussed.




First multply-lensed SN “SN Refsdal”

Kelly et al. (2015, Science
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Kelly et al. (2015, Science

-S4
\ 23 February 2014




First multlply—lensed SN “SN Refsdal”
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First multply-lensed SN SN Refsdal”

Kelly et al. (2015, Science)

* 'Typical Einstein cross
configuration (4 images)

* Main lens: elliptical cluster
member

* Source: spiral galaxy

* Nucleus of the blue lensed
spiral offset by ~ 3.3” from the
red lens elliptical
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predicted by SL models...

* ...and observed!

* 'Typical Einstein cross

configuration (4 images)

member

* Source: spiral gal

* Main lens: elliptical cluster

axy

* Nucleus of the b

spiral offset by ~

ue lensed
3.3” from the

red lens elliptical




First multply-lensed SN SN Refsdal”

Kelly et al. (2015, Science)

“ Reapperance of the SN
predicted by SL models...

* ...and observed!

* 'Typical Einstein cross

configuration (4 images)

member

* Source: spiral gal

* Main lens: elliptical cluster

axy

* Nucleus of the b

spiral offset by ~

ue lensed
3.3” from the

red lens elliptical
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Kelly et al. (2015, Science)

“ Reapperance of the SN
predicted by SL models...

* ...and observed!
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configuration (4 images)
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* Nucleus of the b
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SN Refsdal’s follow-up and true blind tests

MUSE and GLASS data to build refined strong
lensing models and predict SX

S1-4 time delays and magnifications measured
(Treu et al. 2016)

Excellent agreement with the model
predictions (Rodney et al. 2016)

LI B B B L B B B B B B | L L S L L |
1 4 A
sz & 3
A -
A —k—
[ .
(o] O
= &
* —h—
' 3 —1]
- —
—d vy
N T T T T T . |
"_*_'_."""'_H_’_'_*_H_F | LALIN B B N B B R A |
SR - —h—
A —
S3 o O
A -
A -
B o o1
O (8]
= -
—h— —h—
r 3 &
<+ &
—v v
BN T T R . |
"‘H_""""—'_.—H_'_'_'_" | L LA L L L
& - (L;it—a
* —h— ri-g
S4 m r Ogulb
A - Ogu-a
A —k— Ogu-g
—— aQ Jauld.1
(o o]
- ——&—— Shal5
& _— Sha-a
y LA Sha-g
& Zit-g —»
— v Zit-c*
RN A BN O D . | N T T T R N TN TN RN A |
0 o0 0 1 2
At.s; (days) 1/ psi




0.5

SN Refsdal’s follow-up and true blind tests

e Our prediction :
é 0.4 :
o :
2 :
§ 0.3 — E
Our prediction ‘2“ o R
— Measurement <— :
C/J O i
;a o = Diego-a == Oguri-y == Sharon-g & Zilrin-g
- 17, wg= Crillo-g =@ Oguri-a == Sharon-a == Zitrin-c
J '; - oo 0 Jauzac 1
- ‘ 0 1_0r.- 200 300 400
SX Position SX - §1 Time Delay (Observer-Frame Days)
Grillo et al. (2016); Kelley et al. (2017) Treu et al. (2016)

“ The appearance of a distant supernova at a specific sky position and
time successfully predicted in advance!

* If our strong lensing models can provide accurate predictions, our
cluster total mass (dark matter+baryons) mapping are likely to be
very accurate!



T'he SN Retfsdal host galaxy

Observed l ' Predicted
2 arcsce 2 arcsec
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Measuring the Hubble constant

We include the S2-54 and SX time-delay measurements in the modeling and
optimize both the cluster mass distribution and the cosmological model

1D Atsas1®  Atsas1®  Atsas1”  Atsxos:” Xﬁos Xid  Xiow dof
(days) (days) (days) (days)

AL(1) 4+ 4 2+5 24+7 345+ 10 88.1 1.4 89.5 93

At(p) 71X 2 0.6 =3 27T+ 8 345+ 10 &89 1.2 90.1 93

In a flat ACDM model, we can infer the
value of HO with a ~6% statistical error,
without any priors from other

D Ho lo 20 3o

, o £ 446 484 4124

At(t) 73.5 Iyz Ies Di3% looical -
cosmological experiments

, - 443 495 4+14.1

At(p) 728 Ty7 0 Tgo T

Grillo et al. (2018)




Measuring the Hubble constant
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Measuring the Hubble constant
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Measuring the Hubble constant

0.10}
0.08
0.06 |
0.04F

0.02 -

0.001.. ..
50

llllllllllllllll

Atgx.51=
+1 5d
+3\lf)d -3i)d
= — AL(D)
= — Al(p)
= = HOLiCOW
Planck
=== SHOES
8% CT"
60 70 80 90

I, (km s Mpc™)

100

+ Results complementary and

potentially competitive to
other techniques

- Shifts of ~4% (15d) or ~9%

(30d) in the time-delay of
SX translate into ~4% or
~9% differences in the
estimate of Hy

# Reducing the error to ~2%

or ~1% on the time-delay of
SX decreases the error on
the estimate of Hy to ~5%



Measuring the cosmology

| g [ e Y ] » In a flat ACDM model, Hy
| Il | and (., can be measured

| with ~6% and ~31%
statistical errors
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Measuring the cosmology
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Measuring the cosmology

| O [ e  ——————————— » In a flat ACDM model, Hy
| 1 | and (., can be measured

| with ~6% and ~31%
statistical errors

0.81

0.6

0.4}
| 1+ Inageneral ACDM model,
0.2} ]
| Hoy and (., can be
0.0 .
1.0] 10 0.2 0.4 0.6 0.8 1.0 measured with ~7% and
sl — general ACDM Q, ~26% statistical errors
“f — flct ACDM q
06l d + Time delays in lens galaxy
ol ! clusters can become an
A . ; 2
| ! important alternative tool
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0.0 v expansion rate and the
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The HFF and MUSE

MACS 0416
2 MUSE pointings

22 new multiply

lensed sources

z between 3.077
and 6.145

most of them are

low-luminosity

Ly-a emitters

Caminha et al. (2017)




Number of tamilies with spectroscopic redshift

144 spec. member galaxies down to F160W

The HFF and MUSE

Ir l\rh}CS»J 0416 v  Dicgo 2015
this work H  Hoog 2016
M- Jauzac 20156
He-  Richard 2014
HE- Karman 2016
A1GSG* 1> Lamousin 2016
Y
I« Tren 2016
AS1063
" MACSTIOANG
I %
AZ7 j‘* MACSJO717
.\le(j‘-SJllaw: g
A370
wr
10-1
Area(|p| = 10)[Mpe?]

24 mag (Mx ~ 3x108 Mo)

Accurate determination of the projected
total mass distribution

Cored isothermal dark-matter haloes found

MACS 0416

Caminha et al. (2017)

+ 102 secure multiple images

+ 37 systems with measured redshifts

+ largest sample of strong lensing families to

date

MM

1011 1010 109 107 07

B Photometric
B MUSE only
40} | mmm Baleslra 2016

3

Number of members

10

1% 20

22 24 26
magriow



The strong lensing models
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Grillo et al. (2015)



The strong lensing models
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The strong lensing models

2 cluster dark-matter haloes | |
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Grillo et al. (2015)

175 individual
cluster galaxies
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T'he galaxy cluster subhalo population

ACDM simulations

DM from high-resolution simulations, virial radius 1.7 Mpc
(Diemand et al. 2005)



T'he galaxy cluster subhalo population

Observations: MACS 0416

DM from high-resolution simulations, virial radius 1.7 Mpc
(Diemand et al. 2005)



T'he galaxy cluster subhalo population

Observations: MACS 0416

SL model: total. mass
_ b o

DM from high-resolution simulations, virial radius 1.7 Mpc

(Diemand et al. 2005) :
Grillo et al. (2015)




T'he galaxy cluster subhalo population

100/ S— — 1 The velocity function of substructure in MACS
0416 from strong lensing at 1o, 20, and 30.
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T'he galaxy cluster subhalo population

Wi A, WA

W=\ T
=

The velocity function of substructure in MACS
0416 from strong lensing at 1o, 20, and 30.

+ Higher and with different shape than for 24

simulated clusters with total mass similar to
that of MACS 0416.
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T'he galaxy cluster subhalo population

1.00 & The velocity function of substructure in MACS
0416 from strong lensing at 1o, 20, and 30.
* Higher and with different shape than for 24
simulated clusters with total mass similar to
010+ - that of MACS 0416.
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T'he galaxy cluster subhalo population
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+ Simulated galaxy clusters have less mass

in substructure in the inner regions

* Perhaps the effect of dynamical friction

and tidal stripping etfects in DM-only
cosmological simulations

The velocity function of substructure in MACS
0416 from strong lensing at 1o, 20, and 30.

+ Higher and with different shape than for 24

simulated clusters with total mass similar to
that of MACS 0416.
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T'he galaxy cluster subhalo population
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+ Simulated halos consistently underpredict the number of subhalos
on all radial scales (particularly in the inner 150 kpc)
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+ Simulated halos consistently underpredict the number of subhalos
on all radial scales (particularly in the inner 150 kpc)

~100-300 km /s (observational results robust here)

+ Simulated clusters have fewer substructures with v. within




T'he galaxy cluster subhalo population
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+ Simulated clusters have fewer substructures with v. within

~100-300 km /s (observational results robust here)

+ Massive subhalos not formed or accreted so fast into the simulated

clusters?
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* Tidal stripping of massive subhalos more efficient than observed?

+ Massive subhalos not formed or accreted so fast into the simulated




Cluster mass decomposition

* Combined analysis of X-ray and strong
lensing data



Cluster mass decomposition

« MACS 1206 Combined analysis of X-ray and strong

lensing data

MACS 0416

RX J2248 -

Bonamigo et al. (2017)

Dissection of the hot gas and dark
matter components



Cluster mass decomposition

Cluster Miooe Ruooe Npem Nim
(10"°Mz)  (Mpe)

RXC 2248 0.348 2.03 1067 2321026 222 535

MACS JO416 0.396 1.04=0.22 1.82=0.13 193 102

MACS J1206 0439 1.5910.36 2061016 265 82

* Deep Chandra data
* 123 ks for RXC J2248
+ 293 ks for MACS J0416
+ 23 ks for MACS J1206

* High temperatures
+ 12.8 keV for RXC J2248
+ 10.4 keV tfor MACS J0416
+* 13.0 keV for MACS J1206

+ Modelling of the hot-gas mass
distribution with multiple mass
components to fit the X-ray SB

DATA MODFET RESIDUAL

RXC J2248

MACS J0416

MACS J1206

-24 -18 -12

log Sg’hs r Ces ]

sBarcmin

~0.5G -24

-18 =12
lC'g Sglnr‘ + Cres ] "ﬂbl _ St{)c.d)/sg.b,

-6 =10

-saremin

Bonamigo et al. (2018)



Cluster mass decomposition

Dissection of the total
mass distribution into the

diffuse DM and hot-gas
components

The diffuse DM and hot-
gas components have
slightly different centers
and shapes

No significant offsets
between the BCG
positions and the peaks of

the diffuse DM
components

RXC J2248

Bonamigo et al. (2018)
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Cluster mass decomposition

Dissection of the total
mass distribution into the

diffuse DM and hot-gas
components

The diffuse DM and hot-
gas components have
slightly different centers
and shapes

No significant offsets
between the BCG
positions and the peaks of

the diffuse DM
components
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Bonamigo et al. (2018)



Cluster mass decomposition
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* Rescaling the cluster projected

mass profiles, they have an almost
homologous structure, despite the
significantly different relaxation

* Hot-gas over total mass fractions
measured with an unprecedented
(~1%) precision in the cluster cores
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* Hot-gas over total mass fractions
measured with an unprecedented
(~1%) precision in the cluster cores

* Confirmed the findings that current
N-body simulations under-predict
the number of massive sub-halos in

the cores of massive clusters
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Final remarks

+ Caretul strong lensing analyses of galaxy clusters can lead to new exciting
results on their dark matter halos and subhalo population

+ HST angular resolution and multiband coverage + VLT spectroscopy vital to

+ Select and model the cluster members, for both accurate dynamical and
lensing analyses

+ Confirm several multiple image systems, allowing unbiased estimates of
the cluster modeling parameters

« Study in detail the physical properties of background lensed sources
* The new era of high precision strong lensing modeling will allow us to
# Build robust high-resolution mass maps of the galaxy clusters

« Test the ACDM model (e.g., DM mass profiles, substructures...)

+ Exploit the lensing signal to probe the background cosmology



