Measurement of ²²⁹*m*Th decay energy for nuclear clock application CSN3/TORIO-229

M. Osipenko¹, M. Taiuti², M. Biasotti², R. Caciuffo³, G. Gallucci², F. Gatti², M. Giovannini², M. Ripani¹

¹INFN Genova, ²Università di Genova, ³JRC Karlsruhe

Consiglio di Sezione, Genova, 2 July 2018

^{229m}Th-based Nuclear Clock

- Lowest nuclear exited state¹,
- energy from indirect observation²,
- VUV-laser excitation,
- very narrow linewidth³,
- N=10⁵ ÷ 10¹² oscillators^{4,5}, FoM = $\frac{\nu\sqrt{N}}{\Delta\nu}$
- >10³ FoM improvement wrt atomic clock.

¹L.Kroger and C.Reich, Nucl.Phys.A259, 29(1976).
²R.Beck et al., Phys.Rev.Lett.98, 142501 (2007).
³V.Strizhov and E.Tkalya, Sov.Phys.JETP 72, 387 (1991).
⁴C.Campbell et al., Phys.Rev.Lett.102, 233004 (2009).
⁵R.Jackson et al.,J.Phys.Cond.Mat.21, 325403 (2009).

Fast μ calorimeter measurement

- μ calorimeter signal < 50 μ s¹,
- α -²²⁹Th⁺ coincidence,
- ²³³U deposited on Si detector,
- long. range of 90 keV ²²⁹Th⁺ in UO₂ is 8.3 nm (path 16.1 nm),
- 20 nm thick $^{233}UO_2$ film, activity $A_U < 5$ kBq,
- expected rate of time-separated events:

$$\label{eq:Rical} R^{\mu cal}_{lC} \sim A_U B_{229m} A^{geom}_{\mu cal} e^{-t_{lC}/\Delta t} \; ,$$

$$\Delta t > au_{D} ln rac{E_{primary}}{E_{secondary}} \; ,$$

$$R_{lC}^{\mu cal} \sim 10^4 * 0.02 * 10^{-4} * 10^{-3} \sim \frac{1}{d}$$

¹D.Bagliani et al., J.Low.Temp.Phys. 151,234(2008).

Primary sources (Roberto Caciuffo, JRC, Karlsruhe)

First source was deposited by sputtering on active surface of Si detector (300 mm^2), in form of UO₂ dielectric film with diameter 10mm and thickness 10 nm:

- ²³⁸U <0.2 Bq, delivered for background measurements,
- ²³³U <5 kBq, authorization received, waiting for working TES prototype.

Source requirements:

- E-loss limits thickness \leq 20 nm,
- Si-rate limits activity <40 kHz,
- ²³⁸U rate too low (use ²³⁴U?).

	Radioaktiv			
	Nuklid:	chem.	Form	
Institut für	Aktivität:	E	Bq	
	Oberfl. kont: A α < 0,05 Bq/cm ² , A β < 0,5 Bq/cm ²			
	Dosisleistung in 1 mAbstand: U vSv/h			
Transurane	Labor	5	Datum: Tall	
Karisrune	Unterschrift:	/	Uhrzeit	

SQUID setup (V. Ceriale)

- J3 VTT 6 loop DC SQUID,
- bandwidth 0.81 MHz,
- \bigcirc gain G~15.8 mV/ μ A,
- I_c ~60 μA,
- $I_{noise} \sim 1 \text{ pA}/\sqrt{Hz}.$

Lithographic mask design (V. Ceriale)

- Iarge 37×33 mm² wafer (>28.6 mm of PIPS),
- 2 5×5 TESs/ of different size,
- S maximum size 500 μ m,
- (a) minimum size 10 μ m,
- $30 \ \mu m 4 \times 4$ array read in parallel,
- mask to reduce α heating (in progress).

Fast TES prototype (F. Gatti)

- total area $25 \times 25 \ \mu m^2$ (need $> 100 \times 100 \ \mu m^2$),
- 2 Au-Ti bilayer with high T_c (fast),
- **o** proximization approx. ($T_c(Ti)$ =390 mK):

$$T_{c}(Ti-Au)=T_{c}(Ti)\left[1-0.54t_{Au}/t_{Ti}\right],$$

μ calorimeter calibrations

- 439 nm (2.824 eV) blue laser,
- 101 ps pulse, rate <100 MHz,</p>
- **(a)** p.p. 63 mW, $< 1.4 \times 10^7 \ \gamma$ /pulse,
- 440 μ m fiber,
- SMA feedthrough,
- Quartz optical fiber in cryostat,
- **7** transmission 2.6×10^{-5} ,
- NA=0.22 at 2.3 mm,
- 0.035 photons on TES/pulse,
- Convoluted Poissonian spectrum:

$$\sum_{n} e^{-\frac{(E_{dep}/3eV-n)^2}{\sigma_E^2}} \frac{\mu^n}{n!} e^{-\mu}$$

μ calorimeter calibrations cont.

- 25×25 μ m² TES at 2.3 mm: $\lambda \sim$ 0.035 γ ,
- 2 relative second peak height: $2\gamma/1\gamma \sim 0.02$,
- expected resolution (C=2 fJ/K) (RMS 1.1 eV):

$$\sigma_E \sim \sqrt{4kT^2C} \sim 0.4eV$$
,

expected noise (G=2 nW/K) (RMS 0.13 eV, S/N~22):

 $\sigma_{ph} \sim \sqrt{4kT^2G\Gamma au} \sim 1.8 eV \ , \ \sigma_J \sim \sqrt{4kT\xi/ au R}G_{SQUID} \sim 1.3 meV$

Solution Need to increase number of γ by $\times 100$ ($\lambda \sim 3 \gamma$).

μ calorimeter timing

• expected rise-time (observed 20 μ s):

$$au_{R} \sim rac{L_{SQUID} = 2nH + L_{wires} \sim 10nH}{R_{TES} \sim 0.01\Omega} \sim 1.2 \mu s$$

2 expected fall-time (observed 40 μ s):

$$au_D \sim rac{C\sim 2 f J/K}{G\sim 2 n W/K} \sim 1 \mu s \; ,$$

Ineed rise-time $<1 \ \mu$ s and fall-time $<20 \ \mu$ s.

Results/Future Developments

- first prototype of fast μ-calorimeter was developed,
- laser calibrations showed low number of γ /pulse,
- new fiber setup is under study,
- rise-time has to be improved by factor of 20,
- different TES materials and shapes will be tested,
- fall-time has to be improved by factor of 2,
- resolution has to be improved by factor of 2.

Preliminary estimates:

Person	Participation (%)
Mikhail Osipenko	70
Mauro Taiuti†	40
Mauro Giovannini†	20
Marco Ripani	20
Flavio Gatti†	10
Michele Biasotti†	0
Giovanni Gallucci	0
Total	160

† associato INFN.

Richieste Servizi 2019

Servizio	Richieste	Obiettivi
	(11.0.)	
Progettazione	1	Supporto Si/Fibra
Officina	1	Supporto Si/Fibra
Supporto tecnico	1	montaggio, cavi, test
Utilizzo criostato piccolo		test Si e TES, misure

