

Istituto Nazionale di Fisica Nucleare

LUNA3 (CSN3) e LUNA-MV (progetto premiale)

Sandra Zavatarelli

INFN – Sezione di Genova Resp. Loc. **LUNA**

Astrofisica nucleare underground: perche'?

Laboratory for Underground Nuclear Astrophysics

LUNA 1 (1991-2001) 50 kV

> LUNA 2 (2000→...) 400 kV

LUNA MV (2019->...)

Radiation LNGS/surface

Muons 10^{-6} Neutrons 10^{-3} LNGS (1400 m rock shielding = 4000 m w.e.)

25 anni a LUNA: la combustione dell'idrogeno

...e Nucleosintesi del Big Bang

⁶Li(p, γ)⁷Be – abundances of Li isotopes (BBN); improves the knowledge of ³He(α , γ)⁷Be key (p-p chain)

²²Ne(α , γ)²⁶Mg - competes with ²²Ne(α ,n)²⁵Mg neutron source in massive stars(LUNA 400 + MV)

 $^{13}C(\alpha,n)^{16}O$ - neutron source in AGB (LUNA 400 + MV)

 ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N$ – relative abundance of ${}^{12}C{}^{-13}C$ in the deepest layers of H-rich envelopes.

$^{2}H(p,\gamma)^{3}He - ^{2}H production in BBN$

Reaction	Rate Symbol	$\sigma_{^{2}\mathrm{H/H}} \cdot 10^{5}$
$p(n,\gamma)^2 \mathrm{H}$	R_1	± 0.002
$d(p,\gamma)^3$ He	R_2	± 0.062
$d(d,n)^3$ He	R_3	± 0.020
$d(d,p)^3 \mathrm{H}$	R_4	± 0.013

(Di Valentino et al. 2014, $\Omega_b h^2$ = 0.02207)

-The error budget of computed abundance of deuterium is mainly due to the $D(p,\gamma)^{3}He$ reaction -measurements (9% error) NOT in agreement with recent "Ab-Initio" calculations.

Measurement goal:

-Cross section measurement at $30 < E_{cm}(keV) < 260$ with ~ 5% accuracy -Differential cross section measurement at $100 < E_{cm}(keV) < 260$

Physics:

-Cosmology: measurement of Ω_b . -Neutrino physics: measurement of N_{eff} . -Nuclear physics: comparison of data with "ab initio" predictions.

D/H ratio and cosmology

-Deuterium abundance also depends on the density of relativistic particles (photons and 3 neutrinos in SM). Therefore it is a tool to constrain the "dark radiation".

Results: astrophysical factor

⁶Li(p,γ)³He

⁶Li(p,γ)³He

- HPGe at -55° and Si at +125° w.r.t. beam direction
- HPGe at 1.7 cm and Si at 10 cm w.r.t. target

⁶Li(p,γ)³He

Total Yield

Le sorgenti di neutroni per il processo s: ${}^{13}C(\alpha,n){}^{16}O e {}^{22}Ne(\alpha,n){}^{25}Mg$

Nucleosynthesis of half of the elements heavier than Fe

¹³C(α ,n)¹⁶O is the major neutron source for the main component of the *s process* in low mass (1-3 M \odot) AGB stars, whose temperature is around 1-2 × 10⁸ K.

This translates into the effective energy range: 120-250 keV.

No direct data covering this energy range is available yet.

Astrophysical requirement: uncertainty on S(E) < 10%

${}^{13}C(\alpha,n){}^{16}O$: expected reaction rate

Target enrichment in ^{13}C : 99%, I $_{\alpha}$ = 200 μA

N _t =	10 ¹⁸		2 10 ¹⁷	at/cm ²	
	Elab [keV]	Ecm [keV]	Rate [neutr/h]	Rate [neutr/h]	
	400	306	339	121	
heam time:	375	287	103	38.5	
≈ 2 months if bck =0	350	268	28	10.9	
	300	229	1.3	0.6	
	275	210	0.2	0.1	6
	250	191	0.02	0.01	

Low Background ³He counters

- At lowest energy about 1:1 signal:background
- Total bg rate pprox 4 counts/hour
- Composed of neutrons and α emitted into counter from wall

¹³ $C(\alpha,n)^{16}O$: set-up of the new undegroud experiment

Order concluded: delivery by the end of September

Counters arranged in two rings INNER: 6 tubes (25 cm active lenght) at r1 from the target OUTER: 12 tubes (40 cm active lenght) at r2

Geant4 simulations in order to maximise the efficiency (40%)

Detection efficiency ≈ 40%

${}^{13}C(\alpha,n){}^{16}O$: measured yield

²²Ne(α,γ)²⁶Mg

THE LUNA400: THE RATE WITH THE NEW UPPER LIMIT

THE NEW SETUP: MOUNTED AND TESTED IN APRIL 2018, BEAM TIME IN OCTOBER 2018

The branching ratio of the 189.5 keV ²²Ne(p,γ)²³Na resonance <u>European Physical Journal - A 54 (2018) 44</u>

Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors J. Phys. G: Nucl. Part. Phys. 45 (2018) 025203

Improved ¹⁸O(p, α)¹⁵N reaction rate by underground measurements at LUNA <u>PRL, submitted</u>

Direct capture cross section and the Ep = 71 and 105 keV resonances in the ²²Ne(p,γ)²³Na reaction <u>PRL or Nature Physics, to be submitted in a few days</u>

Effect of beam energy straggling on resonant yield in thin gas targets: the cases ${}^{22}Ne(p,\gamma){}^{23}Na$ and ${}^{14}N(p,\gamma){}^{15}O$

Europhysics Letters, to be submitted in a few days

Low energy cross section of the reaction ¹⁸O(p,γ)¹⁹F PRL or PLB, in the hands of the LUNA EB, submission whitin July 2018

& something on $D(p,\gamma)$ and ${}^{6}Li(p,\gamma)$ within the end of the year

LUNA MV- scientific program (2019 \rightarrow 2023)

¹⁴N(p,γ)¹⁵O: High scientific interest for revised data covering a wide energy range (400 keV- 1.2 MeV). Scientific results of high impact but reduced risk immediately after commissioning phase (6 months)

¹²C+¹²C: solid state target. Gamma & particle detectors (30 months)

¹³ $C(\alpha,n)^{16}O$: enriched ¹³C solid target & neutron detector (8 months) Data taking at LUNA 400 kV ongoing.

²²Ne(α ,n)²⁵Mg: enriched ²²Ne gas target & neutron detector (8 months)

Next steps (not before 2024...):

¹² $C(\alpha,\gamma)^{16}O$: ¹²C solid target depleted in ¹³C and α beam OR α jet gas target and ¹²C beam (36 months ??).

The new LUNA-MV site in Hall B

45 normal + 165 UPS

LUN Electrical Power [kW] Cooling AR [kW] Cooling CR [kW] Ventilation [m³/h] Water cooling [l/h] Compressed air Crane Exhaust

Safety Senors 6 x O₂ 2 x SF₆

6 x Smoke CR 30 m x Smoke AR

5 x TVCC

75 Water + 70 Air 5 Air 16000 600 demin + 1400 normal 4 l/min @ 8bar 2T 40m³/h LUNA MV Accelerator room (AR) LUNA MV Control room (CR) Overall dimensions 42 x 12,40 m² Ν News R&D **XENON EX**

Accelerator: ready at HVE

HIGH VOLTAGE ENGINEERING EUROPA B.V. Amsterdamseweg 63,3812 RR Amersfoort, P.O. Box 99,3800 AB Amersfoort, The Netherlands Phone: +31-33-4619741. Fax +31-33-4615291. Trade register Amersfoort nr. 31014544 E-mail: info@highvolteng.com Web: www.highvolteng.com

FACTORY ASSEMBLY PROTOCOL 3.5 MV Singletron accelerator system

End-User/Consignee: Laboratory Nazionale del Gran Sasso, Assergi, Italy

Contract number:

CIG No. 62076380EF and CUP No. 154G14000140005 CIG No. 62076380EF Amdt. No. 1

HVEE ref.:

B9051

We herewith confirm that the 3.5 MV Singletron accelerator system for Laboratory Nazionale del Gran Sasso Assergi, Italy is fully assembled at HVE Amersfoort, The Netherlands.

Accelarator ready at HVE (March 2018) 1st acceptance test : May 28 – June 8, 2018 Accelerator room @ LNGS: conclusion by Sept. 2018

According to the contract signed by INFN, the site in Hall B must be ready at latest at January 2019.

Review of LUNA-MV project on March 23th 2018 by INFN committee (A Arcones, A Nobles, L. Patrizi, E. Santonocito, M. Taiuti)

LUNA-MV: control room

Dimensions: 9 x 5,40 x 7,20 m³ Concrete platform at ground floor: 0,2 m Distance CR ↔ AR: 2,5 m Stair from OPERA Decommissioning

Review Committee Report:

Concerning the Luna-MV Review Of March 23rd, 2018

LNGS

A. Arcones, A. Noble, L. Patrizii, D. Santonocito, M. Taiuti

Contents

1). Overview of the Process				
2). Overview of the material presented and committee assessment				
Part 1: Status of the accelerator and associated infrastructure2				
Part 2: The science capability. Scientific merit and experimental feasibility				
Part 3: Commissioning Plan				
Part 4: Risk Assessment				
3). Summary of Findings and Recommendations9				
Main Findings:9				
Principal Recommendations:				
Appendix: Details of the review				
Detailed Agenda:				
Documents Received:				
Committee Membership:12				

LNGS, March 23th 2018: 1-day review of LUNA-MV

3). Summary of Findings and Recommendations

- iv. The scientific proposal outlines a series of experiments that are recognized world wide as being of high scientific merit.
- v. The committee appreciated the proposal and endorses the choice of the key reactions to be studied in the following five years by the collaboration.
- vi. The experimental program appears to be feasible from a budget and technological point of view, and the collaboration is very experienced, having operated the LUNA-400 accelerator for nearly two decades.
- vii. The collaboration has well developed and well considered plans for the commissioning of both the accelerator and the neutron production monitors and interlocks.

The LUNA collaboration

- F. Amodio, G.F. Ciani^{*}, L. Csedreki, L. Di Paolo, A. Formicola, M. Junker | INFN LNGS /*GSSI, Italy
- D. Bemmerer, K. Stoeckel , M. Takacs, | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma1, Italy
- Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Monarch University Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti | Università di Milano and INFN Milano, Italy
- J. Balibrea, A. Best, A. Di Leva, G. Imbriani | Università di Napoli and INFN Napoli, Italy
- G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Chillery, T. Davinson | University of Edinburgh, United Kingdom
- F. Barile, G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli Università di Bari and INFN Bari, Italy
- R. Perrino | INFN Lecce, Italy

Genova : FTE	
Prati P.	70%
Zavatarelli S.	60%
Cavanna F.	80%
Ferraro F.	20 %

+ Corvisiero P. (100% ass. senior)

Genova : leadership misura ²H(p,γ)³He, responsabilita' simulazioni LUNA-MV: sviluppo bersagli e misura corrente

